B-Trees

CSE 373
Data Structures
Readings

• Reading Chapter 14
 › Section 14.3
 › See also (2-4) trees Chapter 10 Section 10.4
B-trees

- Invented in 1972 by Rudolf Bayer (-) and Ed McCreight(-)
Beyond Binary Search Trees: Multi-Way Trees

• Example: B-tree of order 3 has 2 or 3 children per node

• Search for 8

B-trees

3 4
6 7 8
11 12
13 14
17 18
B-Trees

B-Trees are multi-way search trees commonly used in database systems or other applications where data is stored externally on disks and keeping the tree shallow is important.

A B-Tree of order M has the following properties:
1. The root is either a leaf or has between 2 and M children.
2. All nonleaf nodes (except the root) have between $\lceil M/2 \rceil$ and M children.
3. All leaves are at the same depth.

- All data records are stored at the leaves.
- Internal nodes have “keys” guiding to the leaves.
- Leaves store between $\lceil M/2 \rceil$ and M data records.
Each (non-leaf) internal node of a B-tree has:

- Between \(\lceil M/2 \rceil \) and \(M \) children.
- Up to \(M-1 \) keys \(k_1 < k_2 < \ldots < k_{M-1} \)

Keys are ordered so that:

\(k_1 < k_2 < \ldots < k_{M-1} \)
B-tree alternate definitions

• There are several definitions
• What was in the previous slide is the original def.
• The textbook has a slightly different one
Properties of B-Trees

Children of each internal node are "between" the items in that node. Suppose subtree T_i is the ith child of the node:

- all keys in T_i must be between keys k_{i-1} and k_i

 i.e. $k_{i-1} \leq T_i < k_i$

k_{i-1} is the smallest key in T_i

All keys in first subtree $T_1 < k_1$

All keys in last subtree $T_M \geq k_{M-1}$
Example: Searching in B-trees

• B-tree of order 3: also known as 2-3 tree (2 to 3 children)

• Examples: Search for 9, 14, 12

• Note: If leaf nodes are connected as a Linked List, B-tree is called a B+ tree – Allows sorted list to be accessed easily

- means empty slot
Inserting into B-Trees

- Insert X: Do a Find on X and find appropriate leaf node
 - If leaf node is not full, fill in empty slot with X
 - E.g. Insert 5
 - If leaf node is full, split leaf node and adjust parents up to root node
 - E.g. Insert 9

```
3 4
6 7 8
11 12
```

```
13:-
```

```
6:11
```

```
17:-
```

```
13 14
17 18
```
After insert of 5 and 9

B-trees
Deleting From B-Trees

• Delete X : Do a find and remove from leaf
 › Leaf underflows – borrow from a neighbor
 • E.g. 11
 › Leaf underflows and can’t borrow – merge nodes, delete parent
 • E.g. 17
Deleting case 1

“8” was borrowed from neighbor. Note the change in the parent.
Deleting Case 2
Run Time Analysis of B-Tree Operations

• For a B-Tree of order M
 › Each internal node has up to M-1 keys to search
 › Each internal node has between \(\lceil M/2 \rceil \) and M children
 › Depth of B-Tree storing \(N \) items is \(O(\log \lceil M/2 \rceil N) \)

• Find: Run time is:
 › \(O(\log M) \) to binary search which branch to take at each node. But M is small compared to N.
 › Total time to find an item is \(O(\text{depth} \times \log M) = O(\log N) \)
Summary of Search Trees

• Problem with Binary Search Trees: Must keep tree balanced to allow fast access to stored items
• AVL trees: Insert/Delete operations keep tree balanced
• Splay trees: Repeated Find operations produce balanced trees
• Multi-way search trees (e.g. B-Trees): More than two children
 › per node allows shallow trees; all leaves are at the same depth
 › keeping tree balanced at all times