Splay Trees

CSE 373
Data Structures
Readings

• Reading Chapter 10
 › Section 10.3
Self adjusting Trees

• Ordinary binary search trees have no balance conditions
 › what you get from insertion order is it

• Balanced trees like AVL trees enforce a balance condition when nodes change
 › tree is always balanced after an insert or delete

• Self-adjusting trees get reorganized over time as nodes are accessed
 › Tree adjusts after insert, delete, or find
Splay Trees

- Splay trees are tree structures that:
 - Are not perfectly balanced all the time
 - Data most recently accessed is near the root. (principle of locality; 80-20 “rule”)

- The procedure:
 - After node X is accessed, perform “splaying” operations to bring X to the root of the tree.
 - Do this in a way that leaves the tree more balanced as a whole
Splay Trees (1985)

- Daniel Sleator (1954 -) & Robert Tarjan (1948 -)
Splay Tree Terminology

- Let X be a non-root node with ≥ 2 ancestors.
 - P is its parent node.
 - G is its grandparent node.
Zig-Zig and Zig-Zag

Parent and grandparent in same direction.

Parent and grandparent in different directions.

Zig-zig

Zig-zag
Splay Tree Operations

1. Helpful if nodes contain a parent pointer.

2. When X is accessed, apply one of six rotation routines.
 • Single Rotations (X has a P (the root) but no G)
 ZigFromLeft, ZigFromRight
 • Double Rotations (X has both a P and a G)
 ZigZigFromLeft, ZigZigFromRight
 ZigZagFromLeft, ZigZagFromRight
Zig at depth 1 (root)

- “Zig” is just a single rotation, as in an AVL tree
- Let R be the node that was accessed (e.g. using Find)
- ZigFromLeft moves R to the top → faster access next time.

```
R
\   /
|   |
Q  |
```

```
R
/  /
A  |
```

```
R
/  /
A  |
```

```
R
/  /
A  |
```

```
B
```

```
R
/  /
A  |
```

```
B
```

```
R
/  /
A  |
```

```
B
```
Zig at depth 1

- Suppose Q is now accessed using Find

- ZigFromRight moves Q back to the top
Zig-Zag operation

- “Zig-Zag” consists of two rotations of the opposite direction (assume R is the node that was accessed)

```
ZigFromRight

(2 rotations of opposite direction)

ZigFromLeft
```

Splay Trees
Zig-Zig operation

- “Zig-Zig” consists of two single rotations of the same direction (R is the node that was accessed)

\[\text{Zig-ZigFromLeft} \]
Decreasing depth - "autobalance"

(a) P
 Q
 F
 R
 E
 S
 D
 C
 A
 B

(b) P
 Q
 F
 T
 E
 A
 S
 B
 R
 C
 D

(c) T
 A
 Q
 S
 P
 B
 R
 E
 F

(d) R
 T
 Q
 A
 S
 D
 P
 B
 C
 E
 F

Find(T) → Find(R)

Splay Trees
Splay Tree Insert and Delete

• Insert x
 › Insert x as normal then splay x to root.

• Delete x (there are several options)
 › “Delete” x as in a BST. This yields a node y that is really disappearing
 › Splay y’s parent to the root
Example Insert

- Inserting in order 1, 2, 3, ..., 8
- Without self-adjustment

O(n^2) time for n Insert
With Self-Adjustment

1

2

3

Splay Trees
With Self-Adjustment

Each Insert takes $O(1)$ time therefore $O(n)$ time for n Insert!!
Example Deletion

(Exchange)

(zig-zag) starting here

Splay Trees
Analysis of Splay Trees

• Splay trees tend to be balanced
 › M operations takes time $O(M \log N)$ for $M \geq N$ operations on N items. (proof is difficult)
 › Amortized $O(\log n)$ time.

• Splay trees have good “locality” properties
 › Recently accessed items are near the root of the tree.
 › Items near an accessed one are pulled toward the root.