AVL Trees

CSE 373
Data Structures
Readings

• Reading Chapter 10
 › Section 10.2
Binary Search Tree - Best Time

- All BST operations are $O(d)$, where d is tree depth
- minimum d is $d = \lceil \log_2 N \rceil$ for a binary tree with N nodes
 › What is the best case tree?
 › What is the worst case tree?
- So, best case running time of BST operations is $O(\log N)$
Binary Search Tree - Worst Time

- Worst case running time is $O(N)$
 - What happens when you insert elements in ascending order?
 - Insert: 2, 4, 6, 8, 10, 12 into an empty BST
 - Problem: Lack of "balance":
 - compare depths of left and right subtree
 - Unbalanced degenerate tree
Balanced and unbalanced BST
Approaches to balancing trees

- Don't balance
 - May end up with some nodes very deep
- Strict balance
 - The tree must always be balanced perfectly
- Pretty good balance
 - Only allow a little out of balance
- Adjust on access
 - Self-adjusting
Balancing Binary Search Trees

- Many algorithms exist for keeping binary search trees balanced
 - Adelson-Velskii and Landis (AVL) trees (height-balanced trees)
 - Weight-balanced trees
 - Red-black trees;
 - Splay trees and other self-adjusting trees
 - B-trees and other (e.g. 2-4 trees) multiway search trees
Perfect Balance

- Want a complete tree after every operation
 - tree is full except possibly in the lower right
- This is expensive
 - For example, insert 2 in the tree on the left and then rebuild as a complete tree
AVL Trees (1962)

• Named after 2 Russian mathematicians
• Georgii Adelson-Velsky (1922 - ?)
• Evgenii Mikhailovich Landis (1921-1997)
AVL - Good but not Perfect Balance

• AVL trees are height-balanced binary search trees

• **Balance factor** of a node
 › height(left subtree) - height(right subtree)

• An AVL tree has balance factor calculated at every node
 › For every node, heights of left and right subtree can differ by no more than 1
 › Store current heights in each node
Height of an AVL Tree

• \(N(h) = \) minimum number of nodes in an AVL tree of height \(h \).

• Basis
 › \(N(0) = 1, \ N(1) = 2 \)

• Induction
 › \(N(h) = N(h-1) + N(h-2) + 1 \)

• Solution (recall Fibonacci analysis)
 › \(N(h) \geq \phi^h \quad (\phi \approx 1.62) \)
Height of an AVL Tree

• \(N(h) \geq \phi^h \) (\(\phi \approx 1.62 \))

• Suppose we have \(n \) nodes in an AVL tree of height \(h \).
 › \(n \geq N(h) \)
 › \(n \geq \phi^h \) hence \(\log_\phi n \geq h \) (relatively well balanced tree!!)
 › \(h \leq 1.44 \log_2 n \) (i.e., Find takes \(O(\log n) \))
Node Heights

height of node = h
balance factor = $h_{\text{left}} - h_{\text{right}}$
empty height = -1
Node Heights after Insert 7

Tree A (AVL)

Tree B (not AVL)

height of node = h
balance factor = $h_{\text{left}} - h_{\text{right}}$
empty height = -1

AVL Trees
Insert and Rotation in AVL Trees

• Insert operation may cause balance factor to become 2 or –2 for some node
 › only nodes on the path from insertion point to root node have possibly changed in height
 › So after the Insert, go back up to the root node by node, updating heights
 › If a new balance factor (the difference $h_{left} - h_{right}$) is 2 or –2, adjust tree by rotation around the node
Single Rotation in an AVL Tree
Double rotation

AVL Trees

Insertion of 34

Imbalance

AVL Trees
Insertions in AVL Trees

Let the node that needs rebalancing be α.

There are 4 cases:

Outside Cases (require single rotation):
1. Insertion into left subtree of left child of α.
2. Insertion into right subtree of right child of α.

Inside Cases (require double rotation):
3. Insertion into right subtree of left child of α.
4. Insertion into left subtree of right child of α.

The rebalancing is performed through four separate rotation algorithms.
AVL Insertion: Outside Case

Consider a valid AVL subtree

AVL Trees
AVL Insertion: Outside Case

Inserting into X destroys the AVL property at node j.
AVL Insertion: Outside Case

Do a “right rotation”
Single right rotation

Do a “right rotation”
Outside Case Completed

“Right rotation” done! ("Left rotation" is mirror symmetric)

AVL property has been restored!
AVL Insertion: Inside Case

Consider a valid AVL subtree
AVL Insertion: Inside Case

Inserting into Y destroys the AVL property at node j

Does “right rotation” restore balance?
AVL Insertion: Inside Case

“Right rotation” does not restore balance... now k is out of balance
AVL Insertion: Inside Case

Consider the structure of subtree Y…
AVL Insertion: Inside Case

Y = node i and subtrees V and W

AVL Trees
AVL Insertion: Inside Case

We will do a left-right “double rotation” . . .
Double rotation: first rotation

left rotation complete
Double rotation: second rotation

Now do a right rotation

AVL Trees
Double rotation: second rotation

Balance has been restored

right rotation complete
You can either keep the height or just the difference in height, i.e. the **balance** factor; this has to be modified on the path of insertion even if you don’t perform rotations.

Once you have performed a rotation (single or double) you won’t need to go back up the tree.
Single Rotation

\[
\text{RotateFromRight}(n : \text{ reference node pointer}) \{
\begin{align*}
p & \colon \text{ node pointer}; \\
p & := n.\text{right}; \\
n.\text{right} & := p.\text{left}; \\
p.\text{left} & := n; \\
n & := p \\
\end{align*}
\]

You also need to modify the heights or balance factors of \(n \) and \(p \)
Double Rotation

DoubleRotateFromRight(n : reference node pointer) {
 RotateFromLeft(n.right);
 RotateFromRight(n);
}
Insert in AVL trees

Insert(T : tree pointer, x : element) : {
if T = null then
 T := new tree; T.data := x; height := 0;
 case
 T.data = x : return ; //Duplicate do nothing
 T.data > x : return Insert(T.left, x);
 if ((height(T.left)- height(T.right)) = 2){
 if (T.left.data > x) then //outside case
 T = RotatefromLeft (T);
 else //inside case
 T = DoubleRotatefromLeft (T);}
 T.data < x : return Insert(T.right, x);
 code similar to the left case
Endcase
 T.height := max(height(T.left),height(T.right)) +1;
 return;
}
AVL Tree Deletion

• Similar but more complex than insertion
 › Rotations and double rotations needed to rebalance
 › Imbalance may propagate upward so that many rotations may be needed.
Pros and Cons of AVL Trees

Arguments for AVL trees:
1. Search is $O(\log N)$ since AVL trees are always balanced.
2. Insertion and deletions are also $O(\log n)$
3. The height balancing adds no more than a constant factor to the speed of insertion.

Arguments against using AVL trees:
1. Difficult to program & debug; more space for balance factor.
2. Asymptotically faster but rebalancing costs time.
3. Most large searches are done in database systems on disk and use other structures (e.g. B-trees).
4. May be OK to have $O(N)$ for a single operation if total run time for many consecutive operations is fast (e.g. Splay trees).
Non-recursive insertion or the hacker’s delight

• Key observations;
 › At most one rotation
 › **Balance factor**: 2 bits are sufficient (-1 left, 0 equal, +1 right)
 › There is one node on the path of insertion, say S, that is “**critical**”. It is the node where a rotation can occur and nodes above it won’t have their balance factors modified
Non-recursive insertion

• Step 1 (Insert and find S):
 › Find the place of insertion and identify the last node S on the path whose BF ≠ 0 (if all BF on the path = 0, S is the root).
 › Insert

• Step 2 (Adjust BF’s)
 › Restart from the child of S on the path of insertion. (note: all the nodes from that node on on the path of insertion have BF = 0.) If the path traversed was left (right) set BF to −1 (+1) and repeat until you reach a null link (at the place of insertion)
Non-recursive insertion (ct’d)

• Step 3 (Balance if necessary):
 › If BF(S) = 0 (S was the root) set BF(S) to the direction of insertion (the tree has become higher)
 › If BF(S) = -1 (+1) and we traverse right (left) set BF(S) = 0 (the tree has become more balanced)
 › If BF(S) = -1 (+1) and we traverse left (right), the tree becomes unbalanced. Perform a single rotation or a double rotation depending on whether the path is left-left (right-right) or left-right (right-left)
Non-recursive Insertion with BF’s

Step 1 & 2

Step 3

Insertion of 34

AVL Trees