Heap Sort

CSE 373
Data Structures
Heap Sort

• Recall Selection Sort:

 While !S.isEmpty() {
 k := S.DeleteMin();
 T.addlast(k); // An easy simplification of Insert(k)
 }

• Let S be a heap and T be the target
 › O(nlogn) since DeleteMin is O(logn)
 › But how do we build a heap?

Robert Floyd 1937-2002
Build Heap

BuildHeap {
 for i = N/2 to 1 by -1 PercDown(i,A[i])
}

N=11
Build Heap
Build Heap

Heap sort
Analysis of Build Heap

• Each node can percolate down at most its own height
• Let $N = 2^{k+1} - 1$ (height of complete heap is k)
• Then sum of heights is

\[
\sum_{i=0}^{k} 2^i (k-i) = 2^{k+1} - 1 - (k+1) = N - (k+1)
\]
Other Heap Operations

• Find(X, H): Find the element X in heap H of N elements
 › What is the running time? O(N)
• FindMax(H): Find the maximum element in H
• Where FindMin is O(1)
 › What is the running time? O(N)
• We sacrificed performance of these operations in order to get O(1) performance for FindMin
Other Heap Operations

- **DecreaseKey(P, Δ, H)**: Decrease the key value of node at position P by a positive amount Δ, e.g., to increase priority
 - First, subtract Δ from current value at P
 - Heap order property may be violated
 - so percolate up to fix
 - Running Time: O(log N)
Other Heap Operations

- **IncreaseKey(P, Δ, H)**: Increase the key value of node at position P by a positive amount Δ, e.g., to decrease priority
 - First, add Δ to current value at P
 - Heap order property may be violated
 - so percolate down to fix
 - Running Time: $O(\log N)$
Other Heap Operations

- **Delete(P,H):** E.g. Delete a job waiting in queue that has been preemptively terminated by user
 - Use `DecreaseKey(P, \infty, H)` followed by `DeleteMin`
 - Running Time: $O(\log N)$
Other Heap Operations

• Merge(H1,H2): Merge two heaps H1 and H2 of size O(N). H1 and H2 are stored in two arrays.
 › Can do O(N) Insert operations: O(N log N) time
 › Better: Copy H2 at the end of H1 and use BuildHeap. Running Time: O(N)