Priority Queues and a first intro to sorting

CSE 373
Data Structures
Readings

• Reading
 › Chapter 8 Sections 8.1 – 8.2
 › Chapter 11 Section 11.1
Revisiting FindMin

- Application: Find the smallest (or highest priority) item quickly
 - Operating system needs to schedule jobs according to priority instead of FIFO
 - Event simulation (bank customers arriving and departing, ordered according to when the event happened)
 - Find student with highest grade, employee with highest salary etc.
Priority Queue ADT

- Priority Queue can efficiently do:
 - **FindMin()** (called Min() in GT (your text book))
 - Returns minimum value but does not delete it
 - **DeleteMin()** (called removeMin() in GT)
 - Returns minimum value and deletes it
 - **Insert (k)**
 - In GT Insert (k,x) where k is the key and x the value. In all algorithms the important part is the key, a “comparable” item. We’ll skip the value.
 - **size()** and **isNotEmpty()**
List implementation of a Priority Queue

• What if we use unsorted lists:
 › FindMin and DeleteMin are $O(n)$
 • In fact you have to go through the whole list
 › Insert(k) is $O(1)$

• What if we used sorted lists
 › FindMin and DeleteMin are $O(1)$
 • Be careful if we want both Min and Max (circular array or doubly linked list)
 › Insert(k) is $O(n)$
 • Recall Assignment 1!
Selection Sort

• Selection Sort
 › Sorts an unsorted list S into a sorted list T
 While !S.isEmpty()
 k := S.DeleteMin();
 T.addlast(k); // An easy simplification of Insert(k)
 }

• Time complexity?
• Easy modification to do it in place
Insertion Sort

• Start with unsorted S and want sorted T

 While !S.isEmpty() {
 k := S.deletelast(); // or deletefirst whichever is easier
 T.Insert(k); // Insert so that T is sorted
 }

• Complexity?
• Again easy to do it place.
Mergesort: A More efficient sorting algorithm

- Uses a “Divide and Conquer” strategy
 - Divide problem into smaller parts
 - Independently solve the parts
 - Combine these solutions to get overall solution
- **Main idea** Divide list into two halves, \textit{recursively} sort left and right halves, then \textit{merge} two halves \(\rightarrow\) Mergesort
Mergesort Example

Priority queues

Divide

Divide

Divide

1 element

Merge

Merge

Merge

Priority queues
Mergesort (array implementation)

- Divide it in two at the midpoint
- Conquer each side in turn (by recursively sorting)
- **Merge** two halves together
Auxiliary Array

• The merging requires an auxiliary array.

```
2 4 8 9 1 3 5 6
```

```
---

Auxiliary array
```
Auxiliary Array

- The merging requires an auxiliary array.

```
 2 4 8 9 1 3 5 6
```

```
1
```

Auxiliary array
Auxiliary Array

- The merging requires an auxiliary array.

```
2  4  8  9  1  3  5  6
```

```
1  2  3  4  5
```

Auxiliary array
Merging

Priority queues
Merging

Priority queues
Merging

Merge(A[], T[] : integer array, left, right : integer) : {
 mid, i, j, k, l, target : integer;
 mid := (right + left)/2;
 i := left; j := mid + 1; target := left;
 while i < mid and j < right do
 else T[target] := A[j]; j := j + 1;
 target := target + 1;
 if i > mid then //left completed//
 for k := left to target-1 do A[k] := T[k];
 if j > right then //right completed//
 k := mid; l := right;
 while k > i do A[l] := A[k]; k := k-1; l := l-1;
 for k := left to target-1 do A[k] := T[k];
}
Recursive Mergesort

Mergesort(A[], T[] : integer array, left, right : integer) : {
 if left < right then
 mid := (left + right)/2;
 Mergesort(A,T,left,mid);
 Mergesort(A,T,mid+1,right);
 Merge(A,T,left,right);
 }

MainMergesort(A[1..n]: integer array, n : integer) : {
 T[1..n]: integer array;
 Mergesort[A,T,1,n];
}
Iterative Mergesort

Merge by 1
Merge by 2
Merge by 4
Merge by 8
Iterative Mergesort

Merge by 1
Merge by 2
Merge by 4
Merge by 8
Merge by 16

Need of a last copy

Priority queues
Iterative Mergesort

IterativeMergesort(A[1..n]: integer array, n: integer) : {
//precondition: n is a power of 2//
i, m, parity: integer;
T[1..n]: integer array;
m := 2; parity := 0;
while m ≤ n do
 for i = 1 to n - m + 1 by m do
 if parity = 0 then Merge(A,T,i,i+m-1);
 else Merge(T,A,i,i+m-1);
 parity := 1 - parity;
m := 2*m;
if parity = 1 then
 for i = 1 to n do A[i] := T[i];
}

How do you handle non-powers of 2?
Mergesort Analysis

• Let $T(N)$ be the running time for an array of N elements
• Mergesort divides array in half and calls itself on the two halves. After returning, it merges both halves using a temporary array.
• Each recursive call takes $T(N/2)$ and merging takes $O(N)$
Mergesort Recurrence Relation

• The recurrence relation for $T(N)$ is:
 › $T(1) \leq a$
 • base case: 1 element array \rightarrow constant time
 › $T(N) \leq 2T(N/2) + bN$
 • Sorting N elements takes
 – the time to sort the left half
 – plus the time to sort the right half
 – plus an $O(N)$ time to merge the two halves

• $T(N) = O(n \log n)$
Mergesort Analysis
Upper Bound

\[T(n) = 2T(n/2) + dn \quad \text{Assuming } n \text{ is a power of } 2 \]
\[\leq 2(2T(n/4) + dn/2) + dn \]
\[= 4T(n/4) + 2dn \]
\[\leq 4(2T(n/8) + dn/4) + 2dn \]
\[= 8T(n/8) + 3dn \]
\[\vdots \]
\[\leq 2^k T(n/2^k) + kdn \]
\[= nT(1) + kdn \quad \text{if } n = 2^k \]
\[n = 2^k, \ k = \log n \]
\[\leq cn + dn \log_2 n \]
\[= O(n \log n) \]
Properties of Mergesort

• Not in-place
 › Requires an auxiliary array \(O(n)\) extra space

• Stable (sorting does not modify the relative positions of equal values)
 › Make sure that left is sent to target on equal values.