
Binary Search Trees

CSE 373
Data Structures

Binary search trees 2

Readings

• Chapter 10 Section 10.1

Binary search trees 3

Binary Search Trees
• Binary search trees are binary trees in

which
› all values in the node’s left subtree

are less than node value
› all values in the node’s right subtree

are greater than node value
• Operations:

› Find, FindMin, FindMax, Insert, Delete

What happens when we traverse the tree
in inorder?

9

5

10

96 99

94

97

Binary search trees 4

Operations on Binary Search
Trees

• How would you implement these?
› Recursive definition of binary

search trees allows recursive routines
• FindMin
• FindMax
• Find
• Insert (but be careful when using recursion)
• Delete (the only tricky one)

9

5

10

96 99

94

97

Binary search trees 5

Binary SearchTree
9

5

10

96 99

94

97

data

left right

9

5 94

10 97

96 99

Binary search trees 6

Find
Find(T : tree pointer, x : element): tree pointer {
case {
T = null : return null;
T.data = x : return T;
T.data > x : return Find(T.left,x);
T.data < x : return Find(T.right,x)

}
}

Binary search trees 7

FindMin

• Design recursive FindMin operation that
returns the smallest element in a binary
search tree.

FindMin(T : tree pointer) : tree pointer {
// precondition: T is not null //
if T.left = null return T
else return FindMin(T.left)

}

Binary search trees 8

Insert Operation
• Insert(T: tree, X: element)

› Do a “Find” operation for X
› If X is found update

(no need to insert)
› Else, “Find” stops at a

NULL pointer
› Insert Node with X there

• Example: Insert 95

10

96 99

94

97
?

Binary search trees 9

Insert 95

10

96 99

94

97
10

96 99

94

97

95

Binary search trees 10

Recursive Insert
Insert(T : tree pointer, x : element) : tree pointer {
if T = null then
T := new tree; T.data := x; return T;//the links to

//children are null
case
T.data > x : T.left := Insert(T.left, x);
T.data < x : T.right := Insert(T.right, x);
T.data = x : break;//Might throw an exception

endcase
}

Slight impediment: When a pointer to an object is passed
as a parameter a copy of the pointer is made.
This is called “call-by value”

Binary search trees 11

Call by Value vs
Call by Reference

• Call by value
› Copy of parameter is used

• Call by reference
› Actual parameter is used

p pF(p)

used inside call of F

Binary search trees 12

Insert Done with call-by-
reference

Insert(T : reference tree pointer, x : element) : integer {
if T = null then
T := new tree; T.data := x; return 1;//the links to

//children are null
case
T.data = x : return 0;
T.data > x : return Insert(T.left, x);
T.data < x : return Insert(T.right, x);

endcase
}

Advantage of reference parameter is that the call has
the original pointer not a copy. But not available in Java

Binary search trees 13

Binary search tree with external
nodes

Each node that
carries a key
has 2 children,
even if they are
“null” children

For a tree with N keys, how many external nodes
are needed?

Binary search trees 14

Drawbacks of external nodes

• Extra O(n) space
› (in fact a little more than double the

original!)
• For all practical purposes, have to

discard external nodes for traversal,
findmin etc…

Binary search trees 15

Advantages of external nodes

• Easier to do insert
• Find the place of insertion

› It will be an external node, say v
• Replace the external node with an

internal node (and 2 external nodes)

Binary search trees 16

Insert with external nodes

Insert “5”

External
node place
of insertion

External node
replaced by
internal node
and 2 external
node children

Binary search trees 17

Insert (keeping original root)
Insert (t : tree pointer, x: element){

//preconditions: tree not empty; element x not in the tree

if (x < t.key) then {

if (t.left = null then{ //found place of insertion

new s; // the two children of s are null

s.data := x;

t.left := s;

return}

else Insert(t.left,x)}

else { // x > t.key

//do same thing as above replacing left by right

}

}

Binary search trees 18

Delete Operation

• Delete is a bit trickier…Why?
• Suppose you want to delete 10
• Strategy:

› Find 10
› Delete the node containing 10

• Problem: When you delete a node,
what do you replace it by?

94

10 97

5 24

11

17

Binary search trees 19

Delete Operation
• Problem: When you delete a node,

what do you replace it by?
• Solution:

› If it has no children, by NULL
› If it has 1 child, by that child
› If it has 2 children, by the node with

the smallest value in its right subtree
(the inorder successor of the node)

94

10 97

5 24

11

17

Binary search trees 20

Delete “5” - No children

Find 5 node

You need to
NULL the pointer
to the node that
you are deleting

94

10 97

5 24

11

17

94

10 97

5 24

11

17

Binary search trees 21

Delete “24” - One child

Find 24 node

replace the
pointer to the
Deleted node with
a pointer to its child

94

10 97

5 24

11

17

94

10 97

5 24

11

17

Binary search trees 22

Delete “10” - two children
Find 10,
Copy the smallest
value in
right subtree
into the node

Then (recursively)
Delete node with
smallest value
in right subtree
Note: it cannot
have two children
(why?)

94

10 97

5 24

11

17

94

11 97

5 24

11

17

Binary search trees 23

Then Delete “11” - One child

Remember
11 node

Then delete
the 11 node,i.e.,
replace the
pointer to it with
a pointer to its
child

94

11 97

5 24

11

17

94

11 97

5 24

11

17

