Binary Search Trees

CSE 373
Data Structures
Readings

• Chapter 10 Section 10.1
Binary Search Trees

- Binary search trees are binary trees in which
 - all values in the node’s left subtree are less than node value
 - all values in the node’s right subtree are greater than node value
- Operations:
 - Find, FindMin, FindMax, Insert, Delete

What happens when we traverse the tree in inorder?
Operations on Binary Search Trees

• How would you implement these?
 › Recursive definition of binary search trees allows recursive routines
• FindMin
• FindMax
• Find
• Insert (but be careful when using recursion)
• Delete (the only tricky one)
Binary Search Tree
Find

\[
\text{Find}(T : \text{tree pointer}, x : \text{element}) : \text{tree pointer} \{ \\
\text{case} \{ \\
\quad T = \text{null} : \text{return null;} \\
\quad T.\text{data} = x : \text{return } T; \\
\quad T.\text{data} > x : \text{return } \text{Find}(T.\text{left}, x); \\
\quad T.\text{data} < x : \text{return } \text{Find}(T.\text{right}, x) \\
\} \\
\}\]
FindMin

• Design recursive FindMin operation that returns the smallest element in a binary search tree.

```cpp
FindMin(T : tree pointer) : tree pointer {
    // precondition: T is not null
    if T.left = null return T
    else return FindMin(T.left)
}
```
Insert Operation

- Insert(T: tree, X: element)
 › Do a “Find” operation for X
 › If X is found → update (no need to insert)
 › Else, “Find” stops at a NULL pointer
 › Insert Node with X there
- Example: Insert 95
Insert 95
Recursive Insert

Insert(T : tree pointer, x : element) : tree pointer {
 if T = null then
 T := new tree; T.data := x; return T;//the links to
 //children are null
 case
 T.data > x : T.left := Insert(T.left, x);
 T.data < x : T.right := Insert(T.right, x);
 T.data = x : break;//Might throw an exception
 endcase
}

Slight impediment: When a pointer to an object is passed
as a parameter a copy of the pointer is made.
This is called “call-by value”
Call by Value vs Call by Reference

- Call by value
 - Copy of parameter is used

- Call by reference
 - Actual parameter is used

\[p \quad \rightarrow \quad F(p) \quad \rightarrow \quad p \]

used inside call of F
Insert Done with call-by-reference

Insert(T : reference tree pointer, x : element) : integer {
if T = null then
 T := new tree; T.data := x; return 1; //the links to //children are null
case
 T.data = x : return 0;
 T.data > x : return Insert(T.left, x);
 T.data < x : return Insert(T.right, x);
endcase
}

Advantage of reference parameter is that the call has the original pointer not a copy. But not available in Java
Binary search tree with external nodes

Each node that carries a key has 2 children, even if they are “null” children.

For a tree with N keys, how many external nodes are needed?
Drawbacks of external nodes

• Extra $O(n)$ space
 › (in fact a little more than double the original!)

• For all practical purposes, have to discard external nodes for traversal, findmin etc…
Advantages of external nodes

• Easier to do insert
• Find the place of insertion
 › It will be an external node, say v
• Replace the external node with an internal node (and 2 external nodes)
Insert with external nodes

Insert “5”

External node place of insertion

External node replaced by internal node and 2 external node children
Insert (keeping original root)

Insert (t : tree pointer, x: element){
//preconditions: tree not empty; element x not in the tree
if (x < t.key) then {
 if (t.left = null then{ //found place of insertion
 new s; // the two children of s are null
 s.data := x;
 t.left := s;
 return}
 else Insert(t.left,x)}
else { // x > t.key
 //do same thing as above replacing left by right
}
}
Delete Operation

- Delete is a bit trickier…Why?
- Suppose you want to delete 10
- Strategy:
 ‣ Find 10
 ‣ Delete the node containing 10
- Problem: When you delete a node, what do you replace it by?
Delete Operation

- Problem: When you delete a node, what do you replace it by?
- Solution:
 - If it has no children, by NULL
 - If it has 1 child, by that child
 - If it has 2 children, by the node with the smallest value in its right subtree (the inorder successor of the node)
Delete “5” - No children

Find 5 node

You need to NULL the pointer to the node that you are deleting
Delete “24” - One child

Find 24 node

replace the pointer to the Deleted node with a pointer to its child
Delete “10” - two children

Find 10, Copy the smallest value in right subtree into the node

Then (recursively) Delete node with smallest value in right subtree
Note: it cannot have two children (why?)

Binary search trees
Then Delete “11” - One child

Remember
11 node

Then delete the 11 node, i.e., replace the pointer to it with a pointer to its child