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Readings

• Chapter 10 Section 10.1
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Binary Search Trees
• Binary search trees are binary trees in 

which 
› all values in the node’s left subtree

are less than node value
› all values in the node’s right subtree

are greater than node value
• Operations:

› Find, FindMin, FindMax, Insert, Delete

What happens when we traverse the tree 
in inorder?
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Operations on Binary Search 
Trees

• How would you implement these?
› Recursive definition of binary 

search trees allows recursive routines
• FindMin
• FindMax
• Find
• Insert (but be careful when using recursion)
• Delete (the only tricky one)
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Binary SearchTree
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Find
Find(T : tree pointer, x : element): tree pointer {
case {
T = null : return null;     
T.data = x : return T;
T.data > x : return Find(T.left,x);
T.data < x : return Find(T.right,x)

}
}
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FindMin

• Design recursive FindMin operation that 
returns the smallest element in a binary 
search tree.

FindMin(T : tree pointer) : tree pointer {
// precondition: T is not null //
if T.left = null return T
else return FindMin(T.left)

}
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Insert Operation
• Insert(T: tree, X: element) 

› Do a “Find” operation for X
› If X is found update     

(no need to insert)
› Else, “Find” stops at a 

NULL pointer
› Insert Node with X there

• Example: Insert 95
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Recursive Insert
Insert(T : tree pointer, x : element) : tree pointer {
if T = null then
T := new tree; T.data := x; return T;//the links to           

//children are null
case
T.data > x : T.left := Insert(T.left, x);
T.data < x : T.right := Insert(T.right, x);
T.data = x : break;//Might throw an exception

endcase
}

Slight impediment: When a pointer to an object is passed 
as a parameter a copy of the pointer is made. 
This is called “call-by value”
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Call by Value vs
Call by Reference

• Call by value
› Copy of parameter is used

• Call by reference
› Actual parameter is used

p pF(p)

used inside call of F
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Insert Done with call-by-
reference

Insert(T : reference tree pointer, x : element) : integer {
if T = null then
T := new tree; T.data := x; return 1;//the links to           

//children are null
case
T.data = x : return 0;
T.data > x : return Insert(T.left, x);
T.data < x : return Insert(T.right, x);

endcase
}

Advantage of reference parameter is that the call has
the original pointer not a copy. But not available in Java



Binary search trees 13

Binary search tree with external 
nodes

Each node that 
carries a key 
has 2 children, 
even if they are 
“null” children

For a tree with N keys, how many external nodes 
are needed?
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Drawbacks of external nodes

• Extra O(n) space 
› (in fact a little more than double the 

original!)
• For all practical purposes, have to 

discard external nodes for traversal, 
findmin etc…
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Advantages of external nodes

• Easier to do insert
• Find the place of insertion

› It will be an external node, say v
• Replace the external node with an 

internal node (and 2 external nodes)
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Insert with external nodes

Insert “5”

External 
node place 
of insertion

External node 
replaced by 
internal node 
and 2 external 
node children
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Insert (keeping original root)
Insert (t : tree pointer, x: element){

//preconditions: tree not empty; element x not in the tree

if ( x < t.key) then {

if (t.left = null then{  //found place of insertion

new s; // the two children of s are null

s.data := x;

t.left := s; 

return}

else Insert(t.left,x)}

else     {              // x > t.key

//do same thing as above replacing left by right

}

}
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Delete Operation

• Delete is a bit trickier…Why?
• Suppose you want to delete 10
• Strategy:

› Find 10
› Delete the node containing 10

• Problem: When you delete a node,
what do you replace it by?
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Delete Operation
• Problem: When you delete a node,

what do you replace it by?
• Solution:

› If it has no children, by NULL
› If it has 1 child, by that child
› If it has 2 children, by the node with

the smallest value in its right subtree
(the inorder successor of the node)
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Delete “5” - No children

Find 5 node

You need to 
NULL the pointer 
to the node that 
you are deleting
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Delete “24” - One child

Find 24 node

replace the 
pointer to the
Deleted node with
a pointer to its child

94

10 97

5 24

11

17

94

10 97

5 24

11

17



Binary search trees 22

Delete “10” - two children
Find 10,
Copy the smallest
value in
right subtree
into the node

Then (recursively)
Delete node with 
smallest value
in right subtree
Note:  it cannot
have two children
(why?)
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Then Delete “11” - One child

Remember
11 node

Then delete
the 11 node,i.e., 
replace the 
pointer to it with
a pointer to its
child
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