Sorting

CSE 373
Data Structures
Lecture 19
Reading

• Reading
 › Sections 7.1-7.3 and 7.5
 › Section 7.6, Mergesort
 › Section 7.7, Quicksort
Sorting

- **Input**
 - an array A of data records (Note: we have seen how to sort when elements are in linked lists: Mergesort)
 - a key value in each data record
 - a comparison function which imposes a consistent ordering on the keys (e.g., integers)

- **Output**
 - reorganize the elements of A such that
 - For any i and j, if $i < j$ then $A[i] \leq A[j]$
Space

• How much space does the sorting algorithm require in order to sort the collection of items?
 › Is copying needed? $O(n)$ additional space
 › In-place sorting – no copying – $O(1)$ additional space
 › Somewhere in between for “temporary”, e.g. $O(\log n)$ space
 › External memory sorting – data so large that does not fit in memory
Time

- How fast is the algorithm?
 - The definition of a sorted array A says that for any $i < j$, $A[i] < A[j]$
 - This means that you need to at least check on each element at the very minimum, i.e., at least $O(N)$
 - And you could end up checking each element against every other element, which is $O(N^2)$
 - The big question is: How close to $O(N)$ can you get?
Stability

- Stability: Does it rearrange the order of input data records which have the same key value (duplicates)?
 - E.g. Phone book sorted by name. Now sort by county – is the list still sorted by name within each county?
 - Extremely important property for databases
 - A stable sorting algorithm is one which does not rearrange the order of duplicate keys
Faster is better!
Bubble Sort

• “Bubble” elements to their proper place in the array by comparing elements i and $i+1$, and swapping if $A[i] > A[i+1]$

 › Bubble every element towards its correct position
 • last position has the largest element
 • then bubble every element except the last one towards its correct position
 • then repeat until done or until the end of the quarter, whichever comes first ...
Bubblesort

bubble(A[1..n]: integer array, n : integer): {
 i, j : integer;
 for i = 1 to n-1 do
 for j = 2 to n-i+1 do
 }

SWAP(a,b) : {
 t : integer;
 t:=a; a:=b; b:=t;
}
Put the largest element in its place

larger value? → 2 3 8 8

1 2 3 8 7 9 10 12 23 18 15 16 17 14

swap

1 2 3 7 8 9 10 12 23 18 15 16 17 14

9 10 12 23 23

1 2 3 7 8 9 10 12 23 18 15 16 17 14

swap

1 2 3 7 8 9 10 12 18 23 15 16 17 14

swap

1 2 3 7 8 9 10 12 18 15 23 16 17 14

swap

1 2 3 7 8 9 10 12 18 15 16 23 17 14

swap

1 2 3 7 8 9 10 12 18 15 16 17 23 14

swap

1 2 3 7 8 9 10 12 18 15 16 17 14 23
Put 2^{nd} largest element in its place

Two elements done, only $n-2$ more to go ...
Bubble Sort: Just Say No

- “Bubble” elements to their proper place in the array by comparing elements \(i \) and \(i+1 \), and swapping if \(A[i] > A[i+1] \)
- We bubbleize for \(i=1 \) to \(n \) (i.e., \(n \) times)
- Each bubblization is a loop that makes \(n-i \) comparisons
- This is \(\mathcal{O}(n^2) \)
Insertion Sort

- What if first k elements of array are already sorted?
 - $4, 7, 12, 5, 19, 16$

- We can shift the tail of the sorted elements list down and then *insert* next element into proper position and we get $k+1$ sorted elements
 - $4, 5, 7, 12, 19, 16$
Insertion Sort

\begin{verbatim}
InsertionSort(A[1..N]: integer array, N: integer) {
 i, j, temp: integer
 for i = 2 to N {
 temp := A[i];
 j := i;
 while j > 1 and A[j-1] > temp {
 }
 A[j] = temp;
 }
}
\end{verbatim}

- Is Insertion sort in place?
- Running time = ?
Example
Example

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>12</th>
<th>15</th>
<th>16</th>
<th>18</th>
<th>17</th>
<th>23</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>23</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>14</td>
<td>23</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>16</td>
<td>14</td>
<td>18</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>14</td>
<td>17</td>
<td>18</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>23</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>23</td>
</tr>
</tbody>
</table>
Insertion Sort Characteristics

- In place and Stable
- Running time
 - Worst case is $O(N^2)$
 - reverse order input
 - must copy every element every time
- Good sorting algorithm for almost sorted data
 - Each item is close to where it belongs in sorted order.
Heap Sort

- We use a Max-Heap
- Root node = A[1]
- Keep track of current size N (number of nodes)
Using Binary Heaps for Sorting

- Build a **max-heap**
- Do N **DeleteMax** operations and store each Max element as it comes out of the heap
- Data comes out in largest to smallest order
- Where can we put the elements as they are removed from the heap?
1 Removal = 1 Addition

- Every time we do a DeleteMax, the heap gets smaller by one node, and we have one more node to store
 - Store the data at the end of the heap array
 - Not "in the heap" but it is in the heap array

<table>
<thead>
<tr>
<th>value</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>2</th>
<th>7</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

N = 4
Repeated DeleteMax

N = 3

N = 2
Heap Sort is In-place

- After all the DeleteMaxs, the heap is gone but the array is full and is in sorted order

<table>
<thead>
<tr>
<th>value</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

N = 0
Heapsort: Analysis

- Running time
 - time to build max-heap is $O(N)$
 - time for N DeleteMax operations is $N O(\log N)$
 - total time is $O(N \log N)$

- Can also show that running time is $\Omega(N \log N)$ for some inputs,
 - so worst case is $\Omega(N \log N)$
 - Average case running time is also $O(N \log N)$

- Heapsort is in-place but not stable (why?)
“Divide and Conquer”

• Very important strategy in computer science:
 › Divide problem into smaller parts
 › Independently solve the parts
 › Combine these solutions to get overall solution

• Idea 1: Divide array into two halves, \textit{recursively} sort left and right halves, then \textit{merge} two halves \rightarrow \textbf{Mergesort}

• Idea 2: Partition array into items that are "small" and items that are "large", then recursively sort the two sets \rightarrow \textbf{Quicksort}
Mergesort

- Divide it in two at the midpoint
- Conquer each side in turn (by recursively sorting)
- Merge two halves together
Mergesort Example

8 2 9 4 5 3 1 6

Divide

8 2 9 4

Divide

8 2

Divide

1 element

8 2

Merge

2 8

Merge

2 4 8 9

Merge

1 3 5 6

1 2 3 4 5 6 8 9
Auxiliary Array

- The merging requires an auxiliary array.

```
2 4 8 9 1 3 5 6
```

Auxiliary array
Auxiliary Array

- The merging requires an auxiliary array.

```
2 4 8 9 1 3 5 6
```

```
1
```

Auxiliary array
Auxiliary Array

• The merging requires an auxiliary array.

```
  2  4  8  9  1  3  5  6
```

```
  1  2  3  4  5
```

Auxiliary array
Merging

normal

target

Left completed first

target

12/26/03 Sorting - Lecture 19
Merging

Right completed first

target
Merging Algorithm

```
Merge(A[], T[] : integer array, left, right : integer) : 
  mid, i, j, k, l, target : integer;
  mid := (right + left)/2;
  i := left; j := mid + 1; target := left;
  while i ≤ mid and j ≤ right do
      else T[target] := A[j]; j := j + 1;
      target := target + 1;
  if i > mid then //left completed//
    for k := left to target-1 do A[k] := T[k];
  if j > right then //right completed//
    k := mid; l := right;
    while k > i do A[l] := A[k]; k := k-1; l := l-1;
    for k := left to target-1 do A[k] := T[k];
}
Recursive Mergesort

```plaintext
Mergesort(A[], T[], left, right : integer) : {
 if left < right then
 mid := (left + right)/2;
 Mergesort(A, T, left, mid);
 Mergesort(A, T, mid+1, right);
 Merge(A, T, left, right);
}

MainMergesort(A[1..n]: integer array, n : integer) : {
 T[1..n]: integer array;
 Mergesort[A, T, 1, n];
}
```
Iterative Mergesort

uses 2 arrays; alternates between them

Merge by 1
Merge by 2
Merge by 4
Merge by 8
Iterative Mergesort

Merge by 1
Merge by 2
Merge by 4
Merge by 8
Merge by 16
Need of a last copy ↓
Iterative Mergesort

IterativeMergesort(A[1..n]: integer array, n : integer) : {
  //precondition: n is a power of 2
  i, m, parity : integer;
  T[1..n]: integer array;
  m := 2; parity := 0;
  while m <= n do
    for i = 1 to n - m + 1 by m do
      if parity = 0 then Merge(A,T,i,i+m-1);
        else Merge(T,A,i,i+m-1);
      parity := 1 - parity;
      m := 2*m;
    if parity = 1 then
      for i = 1 to n do A[i] := T[i];
  }

How do you handle non-powers of 2?
How can the final copy be avoided?
Mergesort Analysis

- Let $T(N)$ be the running time for an array of $N$ elements
- Mergesort divides array in half and calls itself on the two halves. After returning, it merges both halves using a temporary array
- Each recursive call takes $T(N/2)$ and merging takes $O(N)$
Mergesort Recurrence Relation

• The recurrence relation for $T(N)$ is:
  ‣ $T(1) \leq a$
    • base case: 1 element array \ constant time
  ‣ $T(N) \leq 2T(N/2) + bN$
    • Sorting $N$ elements takes
      – the time to sort the left half
      – plus the time to sort the right half
      – plus an $O(N)$ time to merge the two halves

• $T(N) = O(n \log n)$
Properties of Mergesort

- Not in-place
  - Requires an auxiliary array \((O(n)\) extra space\)
- Stable
  - Make sure that \textit{left} is sent to target on equal values.
- Iterative Mergesort reduces copying.
Quicksort

- Quicksort uses a divide and conquer strategy, but does not require the O(N) extra space that MergeSort does
  - Partition array into left and right sub-arrays
    - Choose an element of the array, called pivot
    - the elements in left sub-array are all less than pivot
    - elements in right sub-array are all greater than pivot
  - Recursively sort left and right sub-arrays
  - Concatenate left and right sub-arrays in O(1) time
“Four easy steps”

- To sort an array $S$
  1. If the number of elements in $S$ is 0 or 1, then return. The array is sorted.
  2. Pick an element $v$ in $S$. This is the pivot value.
  3. Partition $S \setminus \{v\}$ into two disjoint subsets, $S_1 = \{\text{all values } x < v\}$, and $S_2 = \{\text{all values } x > v\}$.
  4. Return $\text{QuickSort}(S_1), v, \text{QuickSort}(S_2)$
The steps of QuickSort

1. Select pivot value
2. Partition S
3. QuickSort(S_1) and QuickSort(S_2)
4. Voila! S is sorted
Details, details

- Implementing the actual partitioning
- Picking the pivot
  - want a value that will cause $|S_1|$ and $|S_2|$ to be non-zero, and close to equal in size if possible
- Dealing with cases where the element equals the pivot
Quicksort Partitioning

• Need to partition the array into left and right sub-arrays
  › the elements in left sub-array are ≤ pivot
  › elements in right sub-array are ≥ pivot
• How do the elements get to the correct partition?
  › Choose an element from the array as the pivot
  › Make one pass through the rest of the array and swap as needed to put elements in partitions
Partitioning: Choosing the pivot

- One implementation (there are others)
  - median3 finds pivot and sorts left, center, right
    - Median3 takes the median of leftmost, middle, and rightmost elements
    - An alternative is to choose the pivot randomly (need a random number generator; “expensive”)
    - Another alternative is to choose the first element (but can be very bad. Why?)
  - Swap pivot with next to last element
Partitioning in-place

› Set pointers i and j to start and end of array
› Increment i until you hit element A[i] > pivot
› Decrement j until you hit elmt A[j] < pivot
› Swap A[i] and A[j]
› Repeat until i and j cross
› Swap pivot (at A[N-2]) with A[i]
Example

Choose the pivot as the median of three

\[
\begin{array}{cccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
8 & 1 & 4 & 9 & 0 & 3 & 5 & 2 & 7 & 6 \\
\end{array}
\]

Median of 0, 6, 8 is 6. Pivot is 6

\[
\begin{array}{cccccccccc}
0 & 1 & 4 & 9 & 7 & 3 & 5 & 2 & 6 & 8 \\
\end{array}
\]

Place the largest at the right and the smallest at the left. Swap pivot with next to last element.
Example

Move i to the right up to $A[i]$ larger than pivot. Move j to the left up to $A[j]$ smaller than pivot. Swap
Example

Cross-over i > j

S₁ < pivot  pivot  S₂ > pivot
Recursive Quicksort

Quicksort(A[], left, right : integer): {
    pivotindex : integer;
    if left + CUTOFF ≤ right then
        pivot := median3(A, left, right);
        pivotindex := Partition(A, left, right-1, pivot);
        Quicksort(A, left, pivotindex - 1);
        Quicksort(A, pivotindex + 1, right);
    else
        Insertionsort(A, left, right);
    }

Don’t use quicksort for small arrays.
CUTOFF = 10 is reasonable.
Quicksort Best Case Performance

• Algorithm always chooses best pivot and splits sub-arrays in half at each recursion
  › T(0) = T(1) = O(1)
    • constant time if 0 or 1 element
  › For N > 1, 2 recursive calls plus linear time for partitioning
  › T(N) = 2T(N/2) + O(N)
    • Same recurrence relation as Mergesort
  › T(N) = $O(N \log N)$
Quicksort Worst Case Performance

• Algorithm always chooses the worst pivot – one sub-array is empty at each recursion
  › $T(N) \leq a$ for $N < C$
  › $T(N) \leq T(N-1) + bN$
  › $T(N-2) + b(N-1) + bN$
  › $T(C) + b(C+1) + \ldots + bN$
  › $a + b(C + (C+1) + (C+2) + \ldots + N)$
  › $T(N) = O(N^2)$

• Fortunately, **average case performance** is $O(N \log N)$ (see text for proof)
Properties of Quicksort

• Not stable because of long distance swapping.
• No iterative version (without using a stack).
• Pure quicksort not good for small arrays.
• “In-place”, but uses auxiliary storage because of recursive call (O(log n) space).
• O(n log n) average case performance, but O(n^2) worst case performance.
Folklore

• “Quicksort is the best in-memory sorting algorithm.”
• Truth
  › Quicksort uses very few comparisons on average.
  › Quicksort does have good performance in the memory hierarchy.
    • Small footprint
    • Good locality