Disjoint Union / Find

CSE 373
Data Structures
Lecture 17
Reading

• Reading
 › Chapter 8 (you can skip Section 6)
Equivalence Relations

• A relation R is defined on set S if for every pair of elements $a, b \in S$, $a R b$ is either true or false.

• An equivalence relation is a relation R that satisfies the 3 properties:
 › Reflexive: $a R a$ for all $a \in S$
 › Symmetric: $a R b$ iff $b R a$; $a, b \in S$
 › Transitive: $a R b$ and $b R c$ implies $a R c$

12/26/03 Union/Find - Lecture 17
Equivalence Classes

• Given an equivalence relation R, decide whether a pair of elements $a, b \in S$ is such that $a \, R \, b$.

• The equivalence class of an element a is the subset of S of all elements related to a.

• Equivalence classes are disjoint sets
Dynamic Equivalence Problem

• Starting with each element in a singleton set, and an equivalence relation, build the equivalence classes

• Requires two operations:
 › Find the equivalence class (set) of a given element
 › Union of two sets

• It is a dynamic (on-line) problem because the sets change during the operations and Find must be able to cope!
Disjoint Union - Find

• Maintain a set of pairwise disjoint sets.
 › \{3,5,7\} , \{4,2,8\}, \{9\}, \{1,6\}

• Each set has a unique name, one of its members
 › \{3,\textbf{5},7\} , \{4,2,\textbf{8}\}, \{9\}, \{\textbf{1},6\}
Union

• Union(x,y) – take the union of two sets named x and y
 › \{3,5,7\} , \{4,2,8\}, \{9\}, \{1,6\}
 › Union(5,1)
 \{3,5,7,1,6\}, \{4,2,8\}, \{9\},
Find

• Find(x) – return the name of the set containing x.
 › \{3, 5, 7, 1, 6\}, \{4, 2, 8\}, \{9\},
 › Find(1) = 5
 › Find(4) = 8
 › Find(9) = ?
An Application

- Build a random maze by erasing edges.
An Application (ct’d)

- Pick Start and End
An Application (ct’d)

- Repeatedly pick random edges to delete.
Desired Properties

- None of the boundary is deleted
- Every cell is reachable from every other cell.
- There are no cycles – no cell can reach itself by a path unless it retraces some part of the path.
A Cycle (we don’t want that)
A Good Solution
Good Solution: A Hidden Tree
Number the Cells

We have disjoint sets $S = \{ \{1\}, \{2\}, \{3\}, \{4\}, \ldots \{36\}\}$ each cell is unto itself. We have all possible edges $E = \{ (1,2), (1,7), (2,8), (2,3), \ldots \}$ 60 edges total.

<table>
<thead>
<tr>
<th>Start</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

End
Basic Algorithm

- S = set of sets of connected cells
- E = set of edges
- Maze = set of maze edges initially empty

While there is more than one set in S
pick a random edge (x,y) and remove from E
u := Find(x); v := Find(y);
if u ≠ v then
 Union(u,v) //knock down the wall between the cells (cells in
 //the same set are connected)
else
 add (x,y) to Maze //don’t remove because there is already
 // a path between x and y

All remaining members of E together with Maze form the maze
Example Step

Pick (8,14)

<table>
<thead>
<tr>
<th>Start</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

\[S = \{1,2,7,8,9,13,19\} \]
\[\{3\} \]
\[\{4\} \]
\[\{5\} \]
\[\{6\} \]
\[\{10\} \]
\[\{11,17\} \]
\[\{12\} \]
\[\{14,20,26,27\} \]
\[\{15,16,21\} \]
\[. \]
\[\{22,23,24,29,30,32,33,34,35,36\} \]
Example

\[S \]
\begin{itemize}
 \item \{1,2,7,8,9,13,19\}
 \item \{3\}
 \item \{4\}
 \item \{5\}
 \item \{6\}
 \item \{10\}
 \item \{11,17\}
 \item \{12\}
 \item \{14,20,26,27\}
 \item \{15,16,21\}
 \item \{22,23,24,29,39,32,33,34,35,36\}
\end{itemize}

Find(8) = 7
Find(14) = 20
Union(7,20)

\[S \]
\begin{itemize}
 \item \{1,2,7,8,9,13,19,14,20,26,27\}
 \item \{3\}
 \item \{4\}
 \item \{5\}
 \item \{6\}
 \item \{10\}
 \item \{11,17\}
 \item \{12\}
 \item \{15,16,21\}
 \item \{22,23,24,29,39,32,33,34,35,36\}
\end{itemize}
Example

Pick (19,20)

<table>
<thead>
<tr>
<th>Start</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>End</td>
</tr>
</tbody>
</table>

S
{1,2,7,8,9,13,19,14,20,26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
{22,23,24,29,39,32}
{33,34,35,36}
Example at the End

<table>
<thead>
<tr>
<th>Start</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

S
\{1,2,3,4,5,6,7,... 36\}

- E
- Maze
Up-Tree for DU/F

Initial state

1 2 3 4 5 6 7

Intermediate state

1 2 3 4 5 6 7

Roots are the names of each set.
Find Operation

- Find(x) follow x to the root and return the root (which is the name of the class).

```
Find(6) = 7
```

```
1 ——— 2
    |      |
    v      v

    3
      |   
      v   v

    7 ——— 5 ——— 4
        |       |
        v       v

    6
```
Union Operation

- Union(i,j) - assuming i and j roots, point i to j.

Diagram:

```
1 -> 2
   
3
   
7 -> 5

6

Union(1,7)
```
Simple Implementation

- Array of indices (Up[i] is parent of i)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

Up[x] = 0 means x is a root.
Union

Union(up[] : integer array, x,y : integer) : {
 //precondition: x and y are roots/
 Up[x] := y
}

Constant Time!
Find

- Design Find operator
 - Recursive version
 - Iterative version

Find(up[] : integer array, x : integer) : integer {
 //precondition: x is in the range 1 to size/
 ???
 } if up[x] = 0 then return x
 else
A Bad Case

Union(1,2)

Union(2,3)

Union(n-1,n)

Find(1) \ n \ \text{steps}!!
Weighted Union

- Weighted Union (weight = number of nodes)
 - Always point the smaller tree to the root of the larger tree
Example Again

1

Union(1,2)

Union(2,3)

Union(n-1,n)

Find(1) constant time
Analysis of Weighted Union

- With weighted union an up-tree of height h has weight at least 2^h.
- Proof by induction
 - Basis: $h = 0$. The up-tree has one node, $2^0 = 1$
 - Inductive step: Assume true for all $h' < h$.

$$ W(T_1) \geq W(T_2) \geq 2^{h-1} $$

Weighted union
Induction hypothesis

$$ W(T) \geq 2^{h-1} + 2^{h-1} = 2^h $$
Analysis of Weighted Union

- Let T be an up-tree of weight n formed by weighted union. Let h be its height.
- \(n \geq 2^h \)
- \(\log_2 n \geq h \)
- Find(x) in tree T takes \(O(\log n) \) time.
- Can we do better?
Worst Case for Weighted Union

$n/2$ Weighted Unions

$n/4$ Weighted Unions
Example of Worst Cast (cont’)

After $n - 1 = n/2 + n/4 + \ldots + 1$ Weighted Unions

If there are $n = 2^k$ nodes then the longest path from leaf to root has length k.
Elegant Array Implementation

Can save the extra space by storing the complement of weight in the space reserved for the root
Weighted Union

\[\text{W-Union}(i, j : \text{index})\{ \]
\[
// i and j are roots//
wi := weight[i];
wj := weight[j];
if wi < wj then
 up[i] := j;
 weight[j] := wi + wj;
else
 up[j] := i;
 weight[i] := wi + wj;
\}

12/26/03 Union/Find - Lecture 17 36
Path Compression

- On a Find operation point all the nodes on the search path directly to the root.
Self-Adjustment Works
Path Compression Find

PC-Find(i : index) {
 r := i;
 while up[r] ≠ 0 do //find root//
 r := up[r];
 if i ≠ r then //compress path//
 k := up[i];
 while k ≠ r do
 up[i] := r;
 i := k;
 k := up[k]
 return(r)
}
Example
Disjoint Union / Find
with Weighted Union and PC

- Worst case time complexity for a W-Union is $O(1)$ and for a PC-Find is $O(\log n)$.
- Time complexity for $m \geq n$ operations on n elements is $O(m \log^* n)$ where $\log^* n$ is a very slow growing function.
 - $\log^* n < 7$ for all reasonable n. Essentially constant time per operation!
Amortized Complexity

• For disjoint union / find with weighted union and path compression.
 › average time per operation is essentially a constant.
 › worst case time for a PC-Find is $O(\log n)$.
• An individual operation can be costly, but over time the average cost per operation is not.
Find Solutions

Recursive
Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size/
if up[x] = 0 then return x
else return Find(up,up[x]);
}

Iterative
Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size/
while up[x] ≠ 0 do
 x := up[x];
return x;
}