Hashing

CSE 373
Data Structures
Lecture 10
Readings

• Reading
 › Chapter 5
The Need for Speed

- Data structures we have looked at so far
 - Use comparison operations to find items
 - Need $O(\log N)$ time for Find and Insert
- In real world applications, N is typically between 100 and 100,000 (or more)
 - $\log N$ is between 6.6 and 16.6
- **Hash tables** are an abstract data type designed for $O(1)$ Find and Inserts
Fewer Functions Faster

• compare lists and stacks
 › by reducing the flexibility of what we are allowed to do, we can increase the performance of the remaining operations
 › insert(L,X) into a list versus push(S,X) onto a stack

• compare trees and hash tables
 › trees provide for known ordering of all elements
 › hash tables just let you (quickly) find an element
Limited Set of Hash Operations

- For many applications, a limited set of operations is all that is needed
 - Insert, Find, and Delete
 - Note that no ordering of elements is implied
- For example, a compiler needs to maintain information about the symbols in a program
 - user defined
 - language keywords
Direct Address Tables

• Direct addressing using an array is very fast
• Assume
 › keys are integers in the set $U=\{0,1,\ldots,m-1\}$
 › m is small
 › no two elements have the same key
• Then just store each element at the array location $\text{array}[\text{key}]$
 › search, insert, and delete are trivial
Direct Access Table
Direct Address Implementation

Delete(Table T, ElementType x)
 T[key[x]] = NULL //key[x] is an integer

Insert(Table t, ElementType x)
 T[key[x]] = x

Find(Table t, Key k)
 return T[k]
An Issue

- If most keys in U are used
 - direct addressing can work very well (m small)
- The largest possible key in U, say m, may be much larger than the number of elements actually stored ($|U|$ much greater than $|K|$)
 - the table is very sparse and wastes space
 - in worst case, table too large to have in memory
- If most keys in U are not used
 - need to map U to a smaller set closer in size to K
Mapping the Keys

Key Universe

Hash Function

Table indices

Hashing - Lecture 10

12/26/03
Hashing Schemes

• We want to store N items in a table of size M, at a location computed from the key K (which may not be numeric!)
• Hash function
 › Method for computing table index from key
• Need of a collision resolution strategy
 › How to handle two keys that hash to the same index
“Find” an Element in an Array

• Data records can be stored in arrays.
 › A[0] = {“CHEM 110”, Size 89}
 › A[17] = {“CSE 373”, Size 85}

• Class size for CSE 373?
 › Linear search the array – O(N) worst case time
 › Binary search - O(log N) worst case
Go Directly to the Element

- What if we could directly index into the array using the key?
 - \[A["\text{CSE 373}"] = \{\text{Size 85}\} \]

- Main idea behind hash tables
 - Use a key based on some aspect of the data to index directly into an array
 - \(O(1) \) time to access records
Indexing into Hash Table

• Need a fast *hash function* to convert the element key (string or number) to an integer (the *hash value*) (i.e., map from U to index)
 › Then use this value to index into an array
 › Hash(“CSE 373”) = 157, Hash(“CSE 143”) = 101

• Output of the hash function
 › must always be less than size of array
 › should be as evenly distributed as possible
Choosing the Hash Function

- What properties do we want from a hash function?
 - Want universe of hash values to be distributed randomly to minimize collisions
 - Don’t want systematic nonrandom pattern in selection of keys to lead to systematic collisions
 - Want hash value to depend on all values in entire key and their positions
The Key Values are Important

- Notice that one issue with all the hash functions is that the actual content of the key set matters.
- The elements in K (the keys that are used) are quite possibly a restricted subset of U, not just a random collection.
 - variable names, words in the English language, reserved keywords, telephone numbers, etc, etc.
Simple Hashes

• It's possible to have very simple hash functions if you are certain of your keys

• For example,
 › suppose we know that the keys s will be real numbers uniformly distributed over $0 \leq s < 1$
 › Then a very fast, very good hash function is
 • $\text{hash}(s) = \text{floor}(s \cdot m)$
 • where m is the size of the table
Example of a Very Simple Mapping

- \(\text{hash}(s) = \text{floor}(s \cdot m) \) maps from \(0 \leq s < 1 \) to \(0..m-1 \)
 - \(m = 10 \)

<table>
<thead>
<tr>
<th>s</th>
<th>0.0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>floor(s\cdot m)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Note the even distribution. There are collisions, but we will deal with them later.
Perfect Hashing

- In some cases it's possible to map a known set of keys uniquely to a set of index values.
- You must know every single key beforehand and be able to derive a function that works one-to-one.

\[
\begin{array}{cccccccccccc}
s & 120 & 331 & 912 & 74 & 665 & 47 & 888 & 219 \\
\downarrow & \\
\text{hash}(s) & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
\]
Mod Hash Function

- One solution for a less constrained key set
 - modular arithmetic
- a mod size
 - remainder when "a" is divided by "size"
 - in C or Java this is written as \(r = a \mod size; \)
 - If TableSize = 251
 - 408 mod 251 = 157
 - 352 mod 251 = 101
Modulo Mapping

- $a \mod m$ maps from integers to 0..m-1
 - one to one? no
 - onto? yes
Hashing Integers

• If keys are integers, we can use the hash function:
 › Hash(key) = key mod TableSize

• Problem 1: What if TableSize is 11 and all keys are 2 repeated digits? (eg, 22, 33, …)
 › all keys map to the same index
 › Need to pick TableSize carefully: often, a prime number
Nonnumerical Keys

• Many hash functions assume that the universe of keys is the natural numbers $\mathbb{N} = \{0, 1, \ldots\}$
• Need to find a function to convert the actual key to a natural number quickly and effectively before or during the hash calculation
• Generally work with the ASCII character codes when converting strings to numbers
Characters to Integers

- If keys are strings can get an integer by adding up ASCII values of characters in key
- We are converting a very large string $c_0c_1c_2 \ldots c_n$ to a relatively small number $c_0+c_1+c_2+\ldots+c_n \mod \text{size}$.

<table>
<thead>
<tr>
<th>character</th>
<th>C</th>
<th>S</th>
<th>E</th>
<th>3</th>
<th>7</th>
<th>3</th>
<th><0></th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII value</td>
<td>67</td>
<td>83</td>
<td>69</td>
<td>32</td>
<td>51</td>
<td>55</td>
<td>51</td>
</tr>
</tbody>
</table>
Hash Must be Onto Table

• Problem 2: What if TableSize is 10,000 and all keys are 8 or less characters long?
 › chars have values between 0 and 127
 › Keys will hash only to positions 0 through 8*127 = 1016

• Need to distribute keys over the entire table or the extra space is wasted
Problems with Adding Characters

- Problems with adding up character values for string keys
 - If string keys are short, will not hash evenly to all of the hash table
 - Different character combinations hash to same value
 - “abc”, “bca”, and “cab” all add up to the same value (recall this was Problem 1)
Characters as Integers

- A character string can be thought of as a base 256 number. The string $c_1c_2...c_n$ can be thought of as the number $c_n + 256c_{n-1} + 256^2c_{n-2} + ... + 256^{n-1}c_1$
- **Use Horner’s Rule to Hash!** (see Ex. 2.14)

```plaintext
r = 0;
for i = 1 to n do
r := (c[i] + 256*r) mod TableSize
```
Collisions

• A collision occurs when two different keys hash to the same value
 › E.g. For TableSize = 17, the keys 18 and 35 hash to the same value for the mod17 hash function
 › 18 mod 17 = 1 and 35 mod 17 = 1

• Cannot store both data records in the same slot in array!
Collision Resolution

• Separate Chaining
 › Use data structure (such as a linked list) to store multiple items that hash to the same slot

• Open addressing (or probing)
 › search for empty slots using a second function and store item in first empty slot that is found
Resolution by Chaining

- Each hash table cell holds pointer to linked list of records with same hash value
- Collision: Insert item into linked list
- To Find an item: compute hash value, then do Find on linked list
- Note that there are potentially as many as TableSize lists
Why Lists?

• Can use List ADT for Find/Insert/Delete in linked list
 › O(N) runtime where N is the number of elements in the particular chain

• Can also use Binary Search Trees
 › O(log N) time instead of O(N)
 › But the number of elements to search through should be small (otherwise the hashing function is bad or the table is too small)
 › generally not worth the overhead of BSTs
Load Factor of a Hash Table

- Let $N =$ number of items to be stored
- Load factor $\lambda = \frac{N}{\text{TableSize}}$
 - TableSize = 101 and $N = 505$, then $\lambda = 5$
 - TableSize = 101 and $N = 10$, then $\lambda = 0.1$
- **Average** length of chained list $= \lambda$ and so average time for accessing an item $= O(1) + O(\lambda)$
 - Want λ to be smaller than 1 but close to 1 if good hashing function (i.e. TableSize $\approx N$)
 - With chaining hashing continues to work for $\lambda > 1$
Resolution by Open Addressing

- No links, all keys are in the table
 - reduced overhead saves space
- When searching for x, check locations \(h_1(x) \), \(h_2(x) \), \(h_3(x) \), ... until either
 - \(x \) is found; or
 - we find an empty location (\(x \) not present)
- Various flavors of open addressing differ in which probe sequence they use
Cell Full? Keep Looking.

- $h_i(X) = (\text{Hash}(X) + F(i)) \mod \text{TableSize}$
 - Define $F(0) = 0$
- F is the collision resolution function. Some possibilities:
 - Linear: $F(i) = i$
 - Quadratic: $F(i) = i^2$
 - Double Hashing: $F(i) = i \cdot \text{Hash}_2(X)$
Linear Probing

- When searching for \(K \), check locations \(h(K) \), \(h(K) + 1 \), \(h(K) + 2 \), \(\ldots \) mod TableSize until either
 - \(K \) is found; or
 - we find an empty location (\(K \) not present)
- If table is very sparse, almost like separate chaining.
- When table starts filling, we get clustering but still constant average search time.
- Full table \(\Rightarrow \) infinite loop.
Primary Clustering Problem

• Once a block of a few contiguous occupied positions emerges in the table, it becomes a "target" for subsequent collisions.

• As clusters grow, they also merge to form larger clusters.

• Primary clustering: elements that hash to different cells probe the same alternative cells.
Quadratic Probing

• When searching for x, check locations $h_1(x)$, $h_1(x) + 1^2$, $h_1(x) + 2^2$, ... mod TableSize until either
 › x is found; or
 › we find an empty location (x not present)

• No primary clustering but secondary clustering possible
Double Hashing

• When searching for x, check locations $h_1(x), h_1(x) + h_2(x), h_1(x) + 2h_2(x), \ldots \mod \text{Tablesize}$ until either
 › x is found; or
 › we find an empty location (x not present)

• Must be careful about $h_2(x)$
 › Not 0 and not a divisor of M
 › eg, $h_1(k) = k \mod m_1$, $h_2(k) = 1 + (k \mod m_2)$
 where m_2 is slightly less than m_1
Rules of Thumb

• Separate chaining is simple but wastes space…
• Linear probing uses space better, is fast when tables are sparse
• Double hashing is space efficient, fast (get initial hash and increment at the same time), needs careful implementation
Rehashing – Rebuild the Table

• Need to use lazy deletion if we use probing (why?)
 › Need to mark array slots as deleted after Delete
 › consequently, deleting doesn’t make the table any less full than it was before the delete

• If table gets too full ($\lambda \approx 1$) or if many deletions have occurred, running time gets too long and Inserts may fail
Rehashing

- Build a bigger hash table of approximately twice the size when λ exceeds a particular value
 - Go through old hash table, ignoring items marked deleted
 - Recompute hash value for each non-deleted key and put the item in new position in new table
 - Cannot just copy data from old table because the bigger table has a new hash function
- Running time is $O(N)$ but happens very infrequently
 - Not good for real-time safety critical applications
Rehashing Example

- Open hashing – $h_1(x) = x \mod 5$ rehashes to $h_2(x) = x \mod 11$.

<table>
<thead>
<tr>
<th>$\lambda = 1$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
<td>37</td>
<td>83</td>
<td>52</td>
<td>98</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\lambda = 5/11$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
<td>37</td>
<td>83</td>
<td>52</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Caveats

• Hash functions are very often the cause of performance bugs.
• Hash functions often make the code not portable.
• If a particular hash function behaves badly on your data, then pick another.
• Always check where the time goes