Trees

CSE 373
Data Structures
Lecture 7
Readings

• Reading
 › Chapter 4.1-4.3
Why Do We Need Trees?

- Lists, Stacks, and Queues are linear relationships
- Information often contains hierarchical relationships
 - File directories or folders
 - Moves in a game
 - Hierarchies in organizations
- Can build a tree to support fast searching
Tree Jargon

- root
- nodes and edges
- leaves
- parent, children, siblings
- ancestors, descendants
- subtrees
- path, path length
- height, depth
More Tree Jargon

- **Length of a path** = number of edges
- **Depth of a node** N = length of path from root to N
- **Height of node** N = length of longest path from N to a leaf
- **Depth of tree** = depth of deepest node
- **Height of tree** = height of root

Diagram:
- A (depth=0, height=2)
- B, C, D, E, F (depth=1, height=0)
- E, F (depth=2, height=0)
Definition and Tree Trivia

• A tree is a set of nodes, i.e., either
 › it’s an empty set of nodes, or
 › it has one node called the root from which zero or more trees (subtrees) descend

• Two nodes in a tree have at most one path between them

• Can a non-zero path from node N reach node N again?
No. Trees can never have cycles (loops)
Paths

• A tree with N nodes always has N-1 edges (prove it by induction)

Base Case: N=1
one node, zero edges

Inductive Hypothesis: Suppose that a tree with N=k nodes always has k-1 edges.

Induction: Suppose N=k+1... The k+1st node must connect to the rest by 1 or more edges. If more, we get a cycle. So it connects by just 1 more edge
Implementation of Trees

• One possible pointer-based Implementation
 › tree nodes with value and a pointer to each child
 › but how many pointers should we allocate space for?

• A more flexible pointer-based implementation
 › 1st Child / Next Sibling List Representation
 › Each node has 2 pointers: one to its first child and one to next sibling
 › Can handle arbitrary number of children
Arbitrary Branching
Binary Trees

• Every node has at most two children
 › Most popular tree in computer science
• Given N nodes, what is the minimum depth of a binary tree? (This means all levels but the last are full!)
 › At depth d, you can have N = 2^d to N = 2^{d+1} - 1 nodes

\[2^d \leq N \leq 2^{d+1} - 1 \text{ implies } d_{\text{min}} = \lceil \log_2 N \rceil \]
Minimum depth vs node count

- At depth d, you can have $N = 2^d$ to $2^{d+1} - 1$ nodes
- minimum depth d is $\Theta(\log N)$

$T(n) = \Theta(f(n))$ means $T(n) = O(f(n))$ and $f(n) = O(T(n))$, i.e. $T(n)$ and $f(n)$ have the same growth rate

d=2

$N=2^2$ to $2^3 - 1$ (i.e., 4 to 7 nodes)
Maximum depth vs node count

• What is the maximum depth of a binary tree?
 › Degenerate case: Tree is a linked list!
 › Maximum depth = \(N-1\)

• Goal: Would like to keep depth at around \(\log N\) to get better performance than linked list for operations like Find
A degenerate tree

A linked list with high overhead and few redeeming characteristics
Traversing Binary Trees

• The definitions of the traversals are recursive definitions. For example:
 › Visit the root
 › Visit the left subtree (i.e., visit the tree whose root is the left child) and do this recursively
 › Visit the right subtree (i.e., visit the tree whose root is the right child) and do this recursively

• Traversal definitions can be extended to general (non-binary) trees
Traversing Binary Trees

• Preorder: Node, then Children (starting with the left) recursively
 + * + A B C D

• Inorder: Left child recursively, Node, Right child recursively
 A + B * C + D

• Postorder: Children recursively, then Node
 A B + C * D +
Binary Search Trees

- Binary search trees are binary trees in which
 - all values in the node’s left subtree are less than node value
 - all values in the node’s right subtree are greater than node value
- Operations:
 - Find, FindMin, FindMax, Insert, Delete

What happens when we traverse the tree in inorder?
Operations on Binary Search Trees

- How would you implement these?
 - Recursive definition of binary search trees allows recursive routines
 - Call by reference helps too
- FindMin
- FindMax
- Find
- Insert
- Delete
Binary Search Tree

![Binary Search Tree Diagram]

- The diagram on the left represents a binary search tree with nodes 9, 5, 10, 94, 97, 96, and 99.
- The diagram on the right shows a binary search tree with nodes 9, 5, 10, 94, 97, 96, and 99.
- The tree structure follows the property of binary search trees where each node has at most two children, and all nodes in the left subtree have values less than the node, and all nodes in the right subtree have values greater than the node.

12/26/03
Trees - Lecture 7
Find

Find(T : tree pointer, x : element): tree pointer {
 case {
 T = null : return null;
 T.data = x : return T;
 T.data > x : return Find(T.left,x);
 T.data < x : return Find(T.right,x)
 }
}
FindMin

• Design recursive FindMin operation that returns the smallest element in a binary search tree.

 > FindMin(T : tree pointer) : tree pointer {
 // precondition: T is not null //
 ???
 }

 12/26/03 Trees - Lecture 7
Insert Operation

- Insert(T: tree, X: element)
 - Do a “Find” operation for X
 - If X is found → update (no need to insert)
 - Else, “Find” stops at a NULL pointer
 - Insert Node with X there
- Example: Insert 95
Insert 95
Insert Done with call-by-reference

Insert(T : reference tree pointer, x : element) : integer {
if T = null then
 T := new tree; T.data := x; return 1; // the links to
 // children are null
case
 T.data = x : return 0;
 T.data > x : return Insert(T.left, x); This is where call by
 T.data < x : return Insert(T.right, x); reference makes a
difference.
endcase
}

Advantage of reference parameter is that the call has
the original pointer not a copy.
Call by Value vs Call by Reference

• Call by value
 › Copy of parameter is used

• Call by reference
 › Actual parameter is used
Delete Operation

- Delete is a bit trickier… Why?
- Suppose you want to delete 10
- Strategy:
 - Find 10
 - Delete the node containing 10
- Problem: When you delete a node, what do you replace it by?
Delete Operation

- Problem: When you delete a node, what do you replace it by?

- Solution:
 - If it has no children, by NULL
 - If it has 1 child, by that child
 - If it has 2 children, by the node with the smallest value in its right subtree (the successor of the node)
Delete “5” - No children

Find 5 node

Then Free the 5 node and NULL the pointer to it
Delete “24” - One child

Find 24 node

Then Free the 24 node and replace the pointer to it with a pointer to its child
Delete “10” - two children

Find 10, Copy the smallest value in right subtree into the node

Then (recursively) Delete node with smallest value in right subtree
Note: it cannot have two children (why?)
Then Delete “11” - One child

Remember 11 node

Then Free the 11 node and replace the pointer to it with a pointer to its child
private BinaryNode remove(Comparable x, BinaryNode t) {
 if (t == null) return t; // not found
 if (x.compareTo(t.element) < 0)
 t.left = remove(x, t.left); // search left
 else if (x.compareTo(t.element) > 0)
 t.right = remove(x, t.right); // search right
 else if (t.left != null && t.right != null)
 { t.element = findMin (t.right).element; // find the min, replace,
 t.right = remove(t.element, t.right); } and remove it
 else t = (t.left != null) ? t.left : t.right; // found it; one child
 return t; }

FindMin Solution

FindMin(T : tree pointer) : tree pointer {
 // precondition: T is not null //
 if T.left = null return T
 else return FindMin(T.left)
}

Note: Look at the “remove” method in the book.