Fundamentals

CSE 373
Data Structures
Lecture 5
Mathematical Background

• Today, we will review:
 › Logs and exponents
 › Series
 › Recursion
 › Motivation for Algorithm Analysis
Powers of 2

• Many of the numbers we use in Computer Science are powers of 2
• Binary numbers (base 2) are easily represented in digital computers
 › each "bit" is a 0 or a 1
 › $2^0=1$, $2^1=2$, $2^2=4$, $2^3=8$, $2^4=16$, ..., $2^{10}=1024$ (1K)
 › , an n-bit wide field can hold 2^n positive integers:
 • $0 \leq k \leq 2^n-1$
Unsigned binary numbers

- For unsigned numbers in a fixed width field
 - the minimum value is 0
 - the maximum value is 2^n-1, where n is the number of bits in the field
 - The value is $\sum_{i=0}^{n-1} a_i 2^i$
- Each bit position represents a power of 2 with $a_i = 0$ or $a_i = 1$
Logs and exponents

- Definition: $\log_2 x = y$ means $x = 2^y$
 - $8 = 2^3$, so $\log_2 8 = 3$
 - $65536 = 2^{16}$, so $\log_2 65536 = 16$

- Notice that $\log_2 x$ tells you how many bits are needed to hold x values
 - 8 bits holds 256 numbers: 0 to $2^8-1 = 0$ to 255
 - $\log_2 256 = 8$
x, 2^x and $\log_2 x$
$y = 2^x$

$x = y$

$y = \log_2 x$

$x = 0:10$

$y = 2.^x$

plot(x,y,'r')

hold on

plot(y,x,'g')

plot(y,y,'b')

2^x and $\log_2 x$
Floor and Ceiling

\[
\lfloor X \rfloor \quad \text{Floor function: the largest integer } \leq X
\]

\[
\lfloor 2.7 \rfloor = 2 \quad \lfloor -2.7 \rfloor = -3 \quad \lfloor 2 \rfloor = 2
\]

\[
\lceil X \rceil \quad \text{Ceiling function: the smallest integer } \geq X
\]

\[
\lceil 2.3 \rceil = 3 \quad \lceil -2.3 \rceil = -2 \quad \lceil 2 \rceil = 2
\]
Facts about Floor and Ceiling

1. \(X - 1 < \lfloor X \rfloor \leq X \)
2. \(X \leq \lfloor X \rfloor < X + 1 \)
3. \(\lfloor n/2 \rfloor + \lfloor n/2 \rfloor = n \) if \(n \) is an integer
Properties of logs (of the mathematical kind)

- We will assume logs to base 2 unless specified otherwise
- \(\log AB = \log A + \log B \)
 - \(A = 2^{\log_2 A} \) and \(B = 2^{\log_2 B} \)
 - \(AB = 2^{\log_2 A} \cdot 2^{\log_2 B} = 2^{\log_2 A + \log_2 B} \)
 - so \(\log_2 AB = \log_2 A + \log_2 B \)

 - [note: \(\log AB \neq \log A \cdot \log B \)]
Other log properties

• \(\log A/B = \log A - \log B \)
• \(\log (A^B) = B \log A \)
• \(\log \log X < \log X < X \) for all \(X > 0 \)
 › \(\log \log X = Y \) means \(2^Y = X \)
 › \(\log X \) grows slower than \(X \)
 • called a “sub-linear” function
A log is a log is a log

- Any base x log is equivalent to base 2 log within a constant factor

\[
B = 2^{\log_2 B} \\
\log_x B = \frac{\log_2 B}{\log_2 x} \quad \text{by def. of logs}
\]
Arithmetic Series

- \(S(N) = 1 + 2 + \ldots + N = \sum_{i=1}^{N} i \)

- The sum is
 - \(S(1) = 1 \)
 - \(S(2) = 1 + 2 = 3 \)
 - \(S(3) = 1 + 2 + 3 = 6 \)

\[
\sum_{i=1}^{N} i = \frac{N(N+1)}{2}
\]

Why is this formula useful when you analyze algorithms?
Algorithm Analysis

- Consider the following program segment:

  ```plaintext
  x := 0;
  for i = 1 to N do
    for j = 1 to i do
      x := x + 1;
  ```

- What is the value of x at the end?
Analyzing the Loop

• Total number of times x is incremented is the number of “instructions” executed

$$= \sum_{i=1}^{N} i = \frac{N(N+1)}{2}$$

• You’ve just analyzed the program!
 › Running time of the program is proportional to $N(N+1)/2$ for all N
 › $O(N^2)$
Analyzing Mergesort

Mergesort(p : node pointer) : node pointer {
 Case {
 p = null : return p; // no elements
 p.next = null : return p; // one element
 else
 d : duo pointer; // duo has two fields first, second
 d := Split(p);
 return Merge(Mergesort(d.first), Mergesort(d.second));
 }
}

T(n) is the time to sort n items.

T(0), T(1) ≤ c

T(n) ≤ T(⌊n/2⌋) + T(⌈n/2⌉) + dn
Mergesort Analysis

Upper Bound

\[T(n) \leq 2T(n/2) + dn \quad \text{Assuming } n \text{ is a power of } 2 \]

\[\leq 2(2T(n/4) + dn/2) + dn \]

\[= 4T(n/4) + 2dn \]

\[\leq 4(2T(n/8) + dn/4) + 2dn \]

\[= 8T(n/8) + 3dn \]

\[\vdots \]

\[\leq 2^k T(n/2^k) + kdn \]

\[= nT(1) + kdn \quad \text{if } n = 2^k \quad n = 2^k, k = \log n \]

\[\leq cn + dn \log_2 n \]

\[= O(n \log n) \]
Recursion Used Badly

• Classic example: Fibonacci numbers F_n

 0, 1, 2, 3, 5, 8, 13, 21, ...

 $F_0 = 0, F_1 = 1$ (Base Cases)
 Rest are sum of preceding two
 $F_n = F_{n-1} + F_{n-2}$ (n > 1)

Leonardo Pisano
Fibonacci (1170-1250)
Recursive Procedure for Fibonacci Numbers

\[
\text{fib}(n : \text{integer}) : \text{integer} \{ \\
\text{Case} \{ \\
\text{n} \leq 0 : \text{return} \ 0; \\
\text{n} = 1 : \text{return} \ 1; \\
\text{else} : \text{return} \ \text{fib}(n-1) + \text{fib}(n-2); \\
\} \\
\}
\]

- Easy to write: looks like the definition of \(F_n\)
- But, can you spot the big problem?
Recursive Calls of Fibonacci Procedure

- Re-computes $\text{fib}(N-i)$ multiple times!
Fibonacci Analysis

Lower Bound

$T(n)$ is the time to compute $\text{fib}(n)$.
$T(0), T(1) \geq 1$
$T(n) \geq T(n-1) + T(n-2)$

It can be shown by induction that $T(n) \geq \phi^{n-2}$

where

$$\phi = \frac{1 + \sqrt{5}}{2} \approx 1.62$$
Iterative Algorithm for Fibonacci Numbers

\begin{verbatim}
fib_iter(n : integer): integer {
 fib0, fib1, fibresult, i : integer;
 fib0 := 0; fib1 := 1;
 case { _
 n < 0 : fibresult := 0;
 n = 1 : fibresult := 1;
 else :
 for i = 2 to n do {
 fibresult := fib0 + fib1;
 fib0 := fib1;
 fib1 := fibresult;
 }
 }
 return fibresult;
}
\end{verbatim}
Recursion Summary

• Recursion may simplify programming, but beware of generating large numbers of calls
 › Function calls can be expensive in terms of time and space
• Be sure to get the base case(s) correct!
• Each step must get you closer to the base case
Motivation for Algorithm Analysis

- Suppose you are given two algorithms A and B for solving a problem.
- The running times $T_A(N)$ and $T_B(N)$ of A and B as a function of input size N are given.

Which is better?
More Motivation

• For large N, the running time of A and B

Now which algorithm would you choose?
Asymptotic Behavior

• The “asymptotic” performance as $N \rightarrow \infty$, regardless of what happens for small input sizes N, is generally most important.

• Performance for small input sizes may matter in practice, if you are sure that small N will be common forever.

• We will compare algorithms based on how they scale for large values of N.
Order Notation (one more time)

• Mainly used to express upper bounds on time of algorithms. “n” is the size of the input.
• \(T(n) = O(f(n)) \) if there are constants \(c \) and \(n_0 \) such that \(T(n) \leq c f(n) \) for all \(n \geq n_0 \).
 › \(10000n + 10 \ n \log_2 n = O(n \log n) \)
 › \(.00001 \ n^2 \neq O(n \log n) \)
• Order notation ignores constant factors and low order terms.
Why Order Notation

• Program performance may vary by a constant factor depending on the compiler and the computer used.
• In asymptotic performance \(n \to \infty \) the low order terms are negligible.
Some Basic Time Bounds

- Logarithmic time is $O(\log n)$
- Linear time is $O(n)$
- Quadratic time is $O(n^2)$
- Cubic time is $O(n^3)$
- Polynomial time is $O(n^k)$ for some k.
- Exponential time is $O(c^n)$ for some $c > 1$.
Kinds of Analysis

- **Asymptotic** – uses order notation, ignores constant factors and low order terms.
- **Upper bound vs. lower bound**
- **Worst case** – time bound valid for all inputs of length n.
- **Average case** – time bound valid on average – requires a distribution of inputs.
- **Amortized** – worst case time averaged over a sequence of operations.
- **Others** – best case, common case (80%-20%) etc.