Readings

• Reading
 › Section 3.1 ADT (recall, lecture 1):
 • Abstract Data Type (ADT): Mathematical description of an object with set of operations on the object.
 › Section 3.2 The List ADT
List ADT

• What is a List?
 ‒ Ordered sequence of elements A_1, A_2, \ldots, A_N
• Elements may be of arbitrary type, but all are of the same type
• Common List operations are:
 ‒ Insert, Find, Delete, IsEmpty, IsLast, FindPrevious, First, Kth, Last, Print, etc.
Simple Examples of List Use

- Polynomials
 - $25 + 4x^2 + 75x^{85}$
- Unbounded Integers
 - $4576809099383658390187457649494578$
- Text
 - “This is an example of text”
List Implementations

- Two types of implementation:
 - Array-Based
 - Pointer-Based
List: Array Implementation

• Basic Idea:
 › Pre-allocate a big array of size MAX_SIZE
 › Keep track of current size using a variable count
 › Shift elements when you have to insert or delete

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>count-1</th>
<th>MAX_SIZE-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>A_2</td>
<td>A_3</td>
<td>A_4</td>
<td>...</td>
<td>A_N</td>
<td></td>
</tr>
</tbody>
</table>
List: Array Implementation

Insert Z in kth position

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>MAX_SIZE-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>MAX_SIZE-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>Z</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>
Array List Insert Running Time

- Running time for N elements?
- On average, must move half the elements to make room – assuming insertions at positions are equally likely
- Worst case is insert at position 0. Must move all N items one position before the insert
- This is O(N) running time. Probably too slow
Review Big Oh Notation

• $T(N) = O(f(N))$ if there are positive constants c and n_0 such that:
 $$T(N) \leq c f(N) \text{ when } N \geq n_0$$

• $T(N) = O(N)$ linear
List: Pointer Implementation

- Basic Idea:
 - Allocate little blocks of memory (nodes) as elements are added to the list
 - Keep track of list by linking the nodes together
 - Change links when you want to insert or delete
Pointer-Based Linked List
Pointer-based Insert (after p)

Insert the value E after P
Insertion After

InsertAfter(p : node pointer, v : thing): {
 x : node pointer;
 x := new node;
 x.value := v;
 x.next := p.next;
 p.next := x;
}
Linked List with Header Node

L

header node

Value

ignore

Next

first actual list node

Value

Next

NULL

Advantage: “insert after” and “delete after” can be done at the beginning of the list.
Pointer Implementation Issues

• Whenever you break a list, your code should fix the list up as soon as possible
 › Draw pictures of the list to visualize what needs to be done
• Pay special attention to boundary conditions:
 › Empty list
 › Single item – same item is both first and last
 › Two items – first, last, but no middle items
 › Three or more items – first, last, and middle items
Pointer List Insert Running Time

- Running time for N elements?
- Insert takes constant time (O(1))
- Does not depend on input size
- Compare to array based list which is O(N)
Linked List Delete

To delete the node pointed to by P, need a pointer to the previous node; See book for findPrevious method.
Doubly Linked Lists

- findPrevious (and hence Delete) is slow \([O(N)]\) because we cannot go directly to previous node
- Solution: Keep a "previous" pointer at each node
Double Link Pros and Cons

- Advantage
 - Delete (not DeleteAfter) and FindPrev are faster

- Disadvantages:
 - More space used up (double the number of pointers at each node)
 - More book-keeping for updating the two pointers at each node (pretty negligible overhead)
Unbounded Integers Base 10

-4572

X : node pointer

348

Y : node pointer
Zero

null ← -1

null ← 1
Recursive Addition

• Positive numbers (or negative numbers)

\[
\begin{array}{c}
3427 \\
+ 898 \\
\hline
4325
\end{array}
\quad
\begin{array}{c}
7 \\
+ 8 \\
\hline
15
\end{array}
\quad
\begin{array}{c}
342 \\
+ 89 \\
\hline
431
\end{array}
\]

Recursive calls
Recursive Addition

- Mixed numbers

\[\begin{array}{c}
3427 \\
-898 \\
\hline
\end{array} \quad \begin{array}{c}
7 \\
-8 \\
\hline
9 \\
\end{array} \quad \begin{array}{c}
342 \\
-89 \\
\hline
-10 \\
\hline
-1 \\
\end{array} \]

Recursive calls
Example

- Mixed numbers

1000000 0 100000
-999999 -9 -999999

Recursive calls

1 1
-10 -1
0