Graph Matching

Input: 2 digraphs $G_1 = (V_1, E_1)$, $G_2 = (V_2, E_2)$

Questions to ask:

1. Are G_1 and G_2 isomorphic?

2. Is G_1 isomorphic to a subgraph of G_2?

3. How similar is G_1 to G_2?

4. How similar is G_1 to the most similar subgraph of G_2?
Isomorphism for Digraphs

\(G1 \) is isomorphic to \(G2 \) if there is a 1-1, onto mapping \(h: V1 \rightarrow V2 \) such that

\[
(vi, vj) \in E1 \iff (h(vi), h(vj)) \in E2
\]

Find an isomorphism \(h: \{1,2,3,4,5\} \rightarrow \{a,b,c,d,e\} \).
Check that the condition holds for every edge.
Subgraph Isomorphism for Digraphs

G_1 is isomorphic to a subgraph of G_2 if there is a 1-1 mapping $h: V_1 \rightarrow V_2$ such that

$(v_i,v_j) \in E_1 \Rightarrow (h(v_i), h(v_j)) \in E_2$

Isomorphism and subgraph isomorphism are defined similarly for undirected graphs.

In this case, when $(v_i,v_j) \in E_1$, either (v_i,v_j) or (v_j,v_i) can be listed in E_2, since they are equivalent and both mean $\{v_i,v_j\}$.
Similar Digraphs

Sometimes two graphs are close to isomorphic, but have a few “errors."

Let $h(1)=b$, $h(2)=e$, $h(3)=c$, $h(4)=a$, $h(5)=d$.

The mapping h has 2 errors.

- $(1,2) \rightarrow (b,e)$
- $(2,1) \rightarrow (e,b)$
- $(3,2) \rightarrow \text{X}$
- $(3,4) \rightarrow (c,a)$

$(c,b) \in G2$, but $(3,1) \notin G1$

$(3,2) \in G1$, but $(c,e) \notin G2$
Error of a Mapping

Intuitively, the error of mapping h tells us
- how many edges of G_1 have no corresponding edge in G_2 and
- how many edges of G_2 have no corresponding edge in G_1.

Let $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$, and let $h:V_1\rightarrow V_2$ be a 1-1, onto mapping.

forward error

$$EF(h) = |\{(vi,vj)\in E_1 \mid (h^{-1}(vi),h^{-1}(vj))\not\in E_2\}|$$

edge in E_1 corresponding edge not in E_2

backward error

$$EB(h) = |\{(vi,vj)\in E_2 \mid (h^{-1}(vi),h^{-1}(vj))\not\in E_1\}|$$

edge in E_2 corresponding edge not in E_1

total error

$$\text{Error}(h) = EF(h) + EB(h)$$

relational distance

$$GD(G_1,G_2) = \min \text{ Error}(h)$$

for all 1-1, onto $h:V_1\rightarrow V_2$
Variations of Relational Distance

1. normalized relational distance:
 Divide by the sum of the number of edges in E1 and those in E2.

2. undirected graphs:
 Just modify the definitions of EF and EB to accommodate.

3. one way mappings:
 h is 1-1, but need not be onto
 Only the forward error EF is used.

4. labeled graphs:
 When nodes and edges can have labels, each node should be mapped to a node with the same label, and each edge should be mapped to an edge with the same label.
Graph Matching Algorithms

1. graph isomorphism
2. subgraph isomorphism
3. relational distance
4. attributed relational distance (uses labels)

Subgraph Isomorphism

Given model graph $M = (VM, EM)$

data graph $D = (VD, ED)$

Find 1-1 mapping $h: VM \rightarrow VD$

satisfying $(vi, vj) \in EM \Rightarrow ((h(vi), h(vj)) \in ED$.
Method: Backtracking Tree Search
procedure Treesearch(VM, VD, EM, ED, h)
{
 v = first(VM);
 for each w ∈ VD
 {
 h' = h ∪ {(v,w)}; //add to set
 OK = true;
 for each edge (vi,vj) in EM (with vi < vj for undirected graphs)
 if one of vi or vj is v and the other
 has been assigned a value in h'
 if ((h'(vi),h'(vj)) is NOT in ED)
 {OK = false; break;};

 if OK
 {
 VM' = VM − v; //remove from set
 VD' = VD − w'
 if isempty(VM') output(h');
 else Treesearch(VM’,VD’,EM,ED,h’)
 }
} } } }
Keep track of the least-error mapping.

M

1 → 2 → 3

D

a → b → c → d

map_err = 0
bound_err = 99999

map_err = 0

1, a → 2, b
2, c
2, d
3, c

map_err = 1
bound_err = 1
mapping = {1, a}(2, b)(3, c)}

map_err = 0

1, b → 2, a
2, c
2, d
3, a
3, c

map_err = 0

1, b → 2, a
2, c
2, d
3, a
3, c

map_err = 0; bound_err = 1
mapping = {(1, b)(2, d)(3, c)}

root