Trees

CSE 373
Data Structures

Why Do We Need Trees?

- Lists, Stacks, and Queues are linear relationships
- Information often contains hierarchical relationships
 - File directories or folders
 - Moves in a game
 - Hierarchies in organizations
- Can build a tree to support fast searching

Tree Jargon

- root
- nodes and edges
- leaves
- parent, children, siblings
- ancestors, descendants
- subtrees
- path, path length
- height, depth

More Tree Jargon

- **Length of a path** = number of edges
- **Depth of a node** N = length of path from root to N
- **Height of node** N = length of longest path from N to a leaf
- **Depth of tree** = depth of deepest node
- **Height of tree** = height of root

Definition and Tree Trivia

- A tree is a set of nodes, i.e., either
 - it's an empty set of nodes, or
 - it has one node called the root from which zero or more trees (subtrees) descend
- Two nodes in a tree have at most one path between them
- Can a non-zero path from node N reach node N again?
 - No. Trees can never have cycles (loops)
Paths

- A tree with N nodes always has $N-1$ edges (prove it by induction)

 Base Case: $N=1$

 One node, zero edges

 Inductive Hypothesis: Suppose that a tree with $N=k$ nodes always has $k-1$ edges.

 Induction: Suppose $N=k+1$...
 The $k+1$st node must connect to the rest by 1 or more edges.
 If more, we get a cycle. So it connects by just 1 more edge

Implementation of Trees

- One possible pointer-based implementation
 - tree nodes with value and a pointer to each child
 - but how many pointers should we allocate space for?

- A more flexible pointer-based implementation
 - 1st Child / Next Sibling List Representation
 - Each node has 2 pointers: one to its first child and one to next sibling
 - Can handle arbitrary number of children

Arbitrary Branching

- Every node has at most two children
 - Most popular tree in computer science

- Given N nodes, what is the minimum depth of a binary tree? (This means all levels but the last are full)
 - At depth d, you can have $N = 2^d$ to $2^{d+1} - 1$ nodes

 $$2^d \leq N \leq 2^{d+1} - 1 \implies d_{\text{min}} = \left\lceil \log N \right\rceil$$

Minimum depth vs node count

- At depth d, you can have $N = 2^d$ to $2^{d+1} - 1$ nodes
- minimum depth d is $\Theta(\log N)$

 $T(n) = \Theta(f(n))$ means $T(n) = \Theta(f(n))$ and $f(n) = O(T(n))$.
 i.e. $T(n)$ and $f(n)$ have the same growth rate

 $d=2$
 $N=2^2$ to 2^{3-1} (i.e., 4 to 7 nodes)

Maximum depth vs node count

- What is the maximum depth of a binary tree?
 - Degenerate case: Tree is a linked list!
 - Maximum depth = $N-1$

- Goal: Would like to keep depth at around $\log N$ to get better performance than linked list for operations like Find
A degenerate tree

A linked list with high overhead and few redeeming characteristics

Traversing Binary Trees

- The definitions of the traversals are recursive definitions. For example:
 - Visit the root
 - Visit the left subtree (i.e., visit the tree whose root is the left child) and do this recursively
 - Visit the right subtree (i.e., visit the tree whose root is the right child) and do this recursively
- Traversal definitions can be extended to general (non-binary) trees

Traversing Binary Trees

- Preorder: Node, then Children (starting with the left) recursively
 + + A B C D
- Inorder: Left child recursively, Node, Right child recursively
 A + B * C + D
- Postorder: Children recursively, then Node
 A B + C * D +

Binary Search Trees

- Binary search trees are binary trees in which:
 - all values in the node’s left subtree are less than node value
 - all values in the node’s right subtree are greater than node value
- Operations:
 - Find, FindMin, FindMax, Insert, Delete

What happens when we traverse the tree in inorder?

Operations on Binary Search Trees

- How would you implement these?
 - Recursive definition of binary search trees allows recursive routines
 - Call by reference helps too
- FindMin
- FindMax
- Find
- Insert
- Delete

Binary Search Tree
Find

Find(T : tree pointer, x : element) : tree pointer {
 case {
 T = null : return null;
 T.data = x : return T;
 T.data > x : return Find(T.left, x);
 T.data < x : return Find(T.right, x)
 }
}

FindMin

• Design recursive FindMin operation that returns the smallest element in a binary search tree.

 FindMin(T : tree pointer) : tree pointer {
 // precondition: T is not null //
 ???
 }

Insert Operation

• Insert(T : tree, X : element)
 › Do a "Find" operation for X
 › If X is found → update (no need to insert)
 › Else, "Find" stops at a NULL pointer
 › Insert Node with X there

• Example: Insert 95

Insert 95

Insert Done with call-by-reference

Insert(T : reference tree pointer, x : element) : integer {
 if T = null then
 T := new tree; T.data := x; return 1;//the links to
 //children are null
 case
 T.data = x : return 0;
 T.data > x : return Insert(T.left, x);
 T.data < x : return Insert(T.right, x);
 endcase
}

Advantage of reference parameter is that the call has the original pointer not a copy.

Call by Value vs Call by Reference

• Call by value
 › Copy of parameter is used

 $F(p)$

• Call by reference
 › Actual parameter is used

 p
Delete Operation

• Delete is a bit trickier…Why?
• Suppose you want to delete 10
• Strategy:
 › Find 10
 › Delete the node containing 10
• Problem: When you delete a node, what do you replace it by?

Delete Operation

• Problem: When you delete a node, what do you replace it by?
• Solution:
 › If it has no children, by NULL
 › If it has 1 child, by that child
 › If it has 2 children, by the node with the smallest value in its right subtree (the successor of the node)

Delete “5” - No children

Find 5 node

Then Free the 5 node and NULL the pointer to it

Delete “24” - One child

Find 24 node

Then Free the 24 node and replace the pointer to it with a pointer to its child

Delete “10” - two children

Find 10, Copy the smallest value in right subtree into the node

Then (recursively) Delete node with smallest value in right subtree
Note: it cannot have two children (why?)

Then Delete “11” - One child

Remember 11 node

Then Free the 11 node and replace the pointer to it with a pointer to its child
private BinaryNode remove(Comparable x, BinaryNode t) {
 if (t == null) return t; // not found
 if (x.compareTo(t.element) < 0)
 t.left = remove(x, t.left); // search left
 else if (xcompareTo(t.element) > 0)
 t.right = remove(x, t.right); // search right
 else if (t.left != null && t.right != null) // found it; two children
 t.element = findMin(t.right).element; // find the min, replace, and remove it.
 t.right = remove(t.element, t.right); // search right
 else t = (t.left != null) ? t.left : t.right; // found it; one child
 return t;
}

FindMin Solution

FindMin(T : tree pointer) : tree pointer {
 // precondition: T is not null //
 if T.left = null return T //
 else return FindMin(T.left) //
 }

Note: Look at the “remove” method in the book.