Trees

CSE 373
Data Structures

Readings

• Reading
 › Goodrich and Tamassia, Chapter 6.
Why Do We Need Trees?

- Lists, Stacks, and Queues are linear relationships
- Information often contains hierarchical relationships
 - File directories or folders
 - Moves in a game
 - Hierarchies in organizations
- Can build a tree to support fast searching

Tree Jargon

- root
- nodes and edges
- leaves
- parent, children, siblings
- ancestors, descendants
- subtrees
- path, path length
- height, depth
More Tree Jargon

- **Length** of a path = number of edges
- **Depth** of a node $N = \text{length of path from root to } N$
- **Height** of node $N = \text{length of longest path from } N \text{ to a leaf}$
- **Depth of tree** = depth of deepest node
- **Height of tree** = height of root

![Tree Diagram]

Definition and Tree Trivia

- A tree is a set of nodes, i.e., either
 - it's an empty set of nodes, or
 - it has one node called the root from which zero or more trees (subtrees) descend
- Two nodes in a tree have at most one path between them
- Can a non-zero path from node N reach node N again?

 No. Trees can never have cycles (loops)
Paths

• A tree with N nodes always has N-1 edges (prove it by induction)

 | Base Case: N=1 | one node, zero edges |
 | Inductive Hypothesis: Suppose that a tree with N=k nodes always has k-1 edges. |
 | Induction: Suppose N=k+1… |
 | The k+1st node must connect to the rest by 1 or more edges. |
 | If more, we get a cycle. So it connects by just 1 more edge |

Implementation of Trees

• One possible pointer-based Implementation
 › tree nodes with value and a pointer to each child
 › but how many pointers should we allocate space for?

• A more flexible pointer-based implementation
 › 1st Child / Next Sibling List Representation
 › Each node has 2 pointers: one to its first child and one to next sibling
 › Can handle arbitrary number of children
Arbitrary Branching

Binary Trees

• Every node has at most two children
 › Most popular tree in computer science
• Given N nodes, what is the minimum depth of a binary tree? *(This means all levels but the last are full!)*
 › At depth d, you can have N = \(2^d\) to N = \(2^{d+1} - 1\) nodes

\[
2^d \leq N \leq 2^{d+1} - 1 \implies d_{\text{min}} = \left\lfloor \log_2 N \right\rfloor
\]
Minimum depth vs node count

- At depth d, you can have $N = 2^d$ to $2^{d+1}-1$ nodes
- Minimum depth d is $\Theta(\log N)$

$T(n) = \Theta(f(n))$ means $T(n) = O(f(n))$ and $f(n) = O(T(n))$, i.e. $T(n)$ and $f(n)$ have the same growth rate

$d=2$
$N=2^2$ to 2^3-1 (i.e., 4 to 7 nodes)

Maximum depth vs node count

- What is the maximum depth of a binary tree?
 - Degenerate case: Tree is a linked list!
 - Maximum depth = $N-1$
- Goal: Would like to keep depth at around $\log N$ to get better performance than linked list for operations like Find
A degenerate tree

A linked list with high overhead and few redeeming characteristics

Traversing Binary Trees

- The definitions of the traversals are recursive definitions. For example:
 - Visit the root
 - Visit the left subtree (i.e., visit the tree whose root is the left child) and do this recursively
 - Visit the right subtree (i.e., visit the tree whose root is the right child) and do this recursively
- Traversal definitions can be extended to general (non-binary) trees
Traversing Binary Trees

- Preorder: Node, then Children (starting with the left) recursively $\text{+} \text{*} \text{A B C D}$

- Inorder: Left child recursively, Node, Right child recursively $\text{A} \text{+} \text{B} \text{*} \text{C} \text{+} \text{D}$

- Postorder: Children recursively, then Node A B + C * D +

Binary Search Trees

- Binary search trees are binary trees in which
 - all values in the node’s left subtree are less than node value
 - all values in the node’s right subtree are greater than node value

- Operations:
 - Find, FindMin, FindMax, Insert, Delete

What happens when we traverse the tree in inorder?
Operations on Binary Search Trees

- How would you implement these?
 - Recursive definition of binary search trees allows recursive routines
 - Call by reference helps too
- FindMin
- FindMax
- Find
- Insert
- Delete

Binary Search Tree

```
         9
        /|
       / ||
      5  94 10
     /     |
    96     99
```

```
         9
        /|
       / ||
      5  94 10
     /     |
    96     99
```

left right

```
data
```

4/15/2004 Trees 17
4/15/2004 Trees 18
Find

Find(T : tree pointer, x : element): tree pointer {
 case {
 T = null : return null;
 T.data = x : return T;
 T.data > x : return Find(T.left,x);
 T.data < x : return Find(T.right,x)
 }
}

FindMin

• Design recursive FindMin operation that returns the smallest element in a binary search tree.
 › FindMin(T : tree pointer) : tree pointer {
 // precondition: T is not null //
 ???
 }
Insert Operation

- Insert(T: tree, X: element)
 - Do a “Find” operation for X
 - If X is found → update (no need to insert)
 - Else, “Find” stops at a NULL pointer
 - Insert Node with X there
- Example: Insert 95

Insert 95
Insert Done with call-by-reference

Insert(T : reference tree pointer, x : element) : integer {
if T = null then
 T := new tree; T.data := x; return 1;//the links to
 //children are null

case
 T.data = x : return 0;
 T.data > x : return Insert(T.left, x);
 T.data < x : return Insert(T.right, x);
endcase
}

This is where call by reference makes a difference.

Advantage of reference parameter is that the call has
the original pointer not a copy.

Call by Value vs Call by Reference

• Call by value
 › Copy of parameter is used

 p F(p) p

 used inside call of F

• Call by reference
 › Actual parameter is used
Delete Operation

- Delete is a bit trickier...Why?
- Suppose you want to delete 10
- Strategy:
 › Find 10
 › Delete the node containing 10
- Problem: When you delete a node, what do you replace it by?

- Problem: When you delete a node, what do you replace it by?
- Solution:
 › If it has no children, by NULL
 › If it has 1 child, by that child
 › If it has 2 children, by the node with the smallest value in its right subtree (the successor of the node)
Delete “5” - No children

Find 5 node

Then Free the 5 node and NULL the pointer to it

Delete “24” - One child

Find 24 node

Then Free the 24 node and replace the pointer to it with a pointer to its child
Delete “10” - two children

Find 10, Copy the smallest value in right subtree into the node

Then (recursively) Delete node with smallest value in right subtree
Note: it cannot have two children (why?)

Then Delete “11” - One child

Remember 11 node

Then Free the 11 node and replace the pointer to it with a pointer to its child
private BinaryNode remove(Comparable x, BinaryNode t) {
if (t == null) return t; // not found
if (x.compareTo(t.element) < 0)
 t.left = remove(x, t.left); // search left
else if (x.compareTo(t.element) > 0)
 t.right = remove(x, t.right); // search right
else if (t.left != null && t.right != null) // found it; two children
 { t.element = findMin (t.right).element; // find the min, replace,
 t.right = remove(t.element, t.right); } and remove it
else t = (t.left != null) ? t.left : t.right; // found it; one child
return t; }

FindMin Solution

FindMin(T : tree pointer) : tree pointer {
// precondition: T is not null //
if T.left = null return T
else return FindMin(T.left)
}

Note: Look at the “remove” method in the book.