Sorting

CSE 373
Data Structures

Reading

- Reading
 - Goodrich and Tamassia, Chapter 10

Space

- How much space does the sorting algorithm require in order to sort the collection of items?
 - Is copying needed? O(n) additional space
 - In-place sorting—no copying—O(1) additional space
 - Somewhere in between for “temporary”, e.g. O(log n) space
 - External memory sorting—data so large that does not fit in memory

Time

- How fast is the algorithm?
 - The definition of a sorted array A says that for any i<j, A[i] < A[j]
 - This means that you need to at least check on each element at the very minimum, i.e., at least O(N)
 - And you could end up checking each element against every other element, which is O(N^2)
 - The big question is: How close to O(N) can you get?

Stability

- Stability: Does it rearrange the order of input data records which have the same key value (duplicates)?
 - E.g. Phone book sorted by name. Now sort by county – is the list still sorted by name within each county?
 - Extremely important property for databases
 - A **stable sorting algorithm** is one which does not rearrange the order of duplicate keys

Input

- an array A of data records (Note: we have seen how to sort when elements are in linked lists: Mergesort)
- a key value in each data record
- a comparison function which imposes a consistent ordering on the keys (e.g., integers)

Output

- reorganize the elements of A such that
 - For any i and j, if i < j then A[i] ≤ A[j]
“Bubble” elements to their proper place in the array by comparing elements \(i \) and \(i+1 \), and swapping if \(A[i] > A[i+1] \)

- Bubble every element towards its correct position
 - last position has the largest element
 - then bubble every element except the last one towards its correct position
 - then repeat until done or until the end of the quarter, whichever comes first ...

Bubble Sort

- Faster is better!

Bubblesort

```plaintext
bubble(A[1..n]: integer array, n : integer): {
    i, j : integer;
    for i = 1 to n-1 do
        for j = 2 to n–i+1 do
}

SWAP(a,b) :  {
    t :=a; a:=b; b:=t;
}
```

Put the largest element in its place

- 2\(n^2\) \(\text{n log } n\)
- 4/7/2004 CSE 373 SP 04 --Sorting 8

Put the largest element in its place

```plaintext
larger value?

1 2 3 4 5
6
```

Two elements done, only \(n-2\) more to go ...

Put 2nd largest element in its place

- Bubble Sort: \textbf{Just Say No}

 - “Bubble” elements to their proper place in the array by comparing elements \(i \) and \(i+1 \), and swapping if \(A[i] > A[i+1] \)
 - We bubble for \(i=1\) to \(n\) (i.e, \(n\) times)
 - Each bubbleization is a loop that makes \(n-i\) comparisons
 - This is \(O(n^2)\)
Insertion Sort

• What if first \(k \) elements of array are already sorted?
 \(4, 7, 12, 5, 19, 16 \)
• We can shift the tail of the sorted elements list down and then insert next element into proper position and we get \(k+1 \) sorted elements
 \(4, 5, 7, 12, 19, 16 \)

Insertion Sort

```c
InsertionSort(A[1..N]: integer array, N: integer) {
    i, j, temp: integer;
    for i = 2 to N {
        temp := A[i];
        j := i;
        while j > 1 and A[j-1] > temp {
        A[j] = temp;
    }
}
```

• Is Insertion sort in place?
• Running time = ?

Example

```
1  2  3  8  7  9  10  12  23  18  15  16  17  14
```

 Insertion Sort Characteristics

• In place and Stable
• Running time
 › Worst case is \(O(N^2) \)
 •reverse order input
 • must copy every element every time
• Good sorting algorithm for almost sorted data
 › Each item is close to where it belongs in sorted order.

Heap Sort

• We use a Max-Heap
• Root node = \(A[1] \)
• Keep track of current size \(N \) (number of nodes)
Using Binary Heaps for Sorting

- Build a max-heap
- Do N DeleteMax operations and store each Max element as it comes out of the heap
- Data comes out in largest to smallest order
- Where can we put the elements as they are removed from the heap?

1 Removal = 1 Addition

- Every time we do a DeleteMax, the heap gets smaller by one node, and we have one more node to store
 - Store the data at the end of the heap array
 - Not "in the heap" but it is in the heap array

Repeated DeleteMax

N = 3

N = 2

Heap Sort is In-place

- After all the DeleteMaxs, the heap is gone but the array is full and is in sorted order

Heapsort: Analysis

- Running time
 - time to build max-heap is \(O(N) \)
 - time for \(N \) DeleteMax operations is \(N O(\log N) \)
 - total time is \(O(N \log N) \)
- Can also show that running time is \(\Omega(N \log N) \) for some inputs,
 - so worst case is \(\Theta(N \log N) \)
 - Average case running time is also \(O(N \log N) \)
- Heapsort is in-place but not stable (why?)

“Divide and Conquer”

- Very important strategy in computer science:
 - Divide problem into smaller parts
 - Independently solve the parts
 - Combine these solutions to get overall solution
- Idea 1: Divide array into two halves, recursively sort left and right halves, then merge two halves \(\to \text{ Mergesort} \)
- Idea 2: Partition array into items that are “small” and items that are “large”, then recursively sort the two sets \(\to \text{ Quicksort} \)
Mergesort

- Divide it in two at the midpoint
- Conquer each side in turn (by recursively sorting)
- Merge two halves together

Mergesort Example

8 2 9 4 5 1 6

Divide
Divide
Divide
Merge
Merge
Merge

1 2 3 4 5 6 7 8 9

Merging

normal

Left completed first

Auxiliary Array

- The merging requires an auxiliary array.

Auxiliary array

Auxiliary array

Auxiliary array

Auxiliary array
Merging Algorithm

Merging

Recursive Mergesort

Iterative Mergesort

Iterative Mergesort

How do you handle non-powers of 2? How can the final copy be avoided?
Mergesort Analysis
• Let \(T(N) \) be the running time for an array of \(N \) elements
• Mergesort divides array in half and calls itself on the two halves. After returning, it merges both halves using a temporary array
• Each recursive call takes \(T(N/2) \) and merging takes \(O(N) \)

Mergesort Recurrence Relation
• The recurrence relation for \(T(N) \) is:
 » \(T(1) \leq a \)
 » base case: 1 element array \(\Rightarrow \) constant time
 » \(T(N) \leq 2T(N/2) + bN \)
 » Sorting \(N \) elements takes
 - the time to sort the left half
 - plus the time to sort the right half
 - plus an \(O(N) \) time to merge the two halves
• \(T(N) = O(n \log n) \)

Properties of Mergesort
• Not in-place
 » Requires an auxiliary array \((O(n) \) extra space)
• Stable
 » Make sure that left is sent to target on equal values.
• Iterative Mergesort reduces copying.

Quicksort
• Quicksort uses a divide and conquer strategy, but does not require the \(O(N) \) extra space that Mergesort does
 » Partition array into left and right sub-arrays
 » Choose an element of the array, called pivot
 » the elements in left sub-array are all less than pivot
 » elements in right sub-array are all greater than pivot
 » Recursively sort left and right sub-arrays
 » Concatenate left and right sub-arrays in \(O(1) \) time

“Four easy steps”
• To sort an array \(S \)
 1. If the number of elements in \(S \) is 0 or 1, then return. The array is sorted.
 2. Pick an element \(v \) in \(S \). This is the pivot value.
 3. Partition \(S - \{v\} \) into two disjoint subsets, \(S_1 = \{\text{all values } x \leq v\} \) and \(S_2 = \{\text{all values } x > v\} \).
 4. Return QuickSort\((S_1)\), \(v \), QuickSort\((S_2)\)

The steps of QuickSort
• Select pivot value
• Partition
• QuickSort(S_1) and QuickSort(S_2)
• Voila! \(S \) is sorted
Details, details

• Implementing the actual partitioning
• Picking the pivot
 › want a value that will cause \(|S_1|\) and \(|S_2|\) to be non-zero, and close to equal in size if possible
• Dealing with cases where the element equals the pivot

Quicksort Partitioning

• Need to partition the array into left and right sub-arrays
 › the elements in left sub-array are \(\leq\) pivot
 › elements in right sub-array are \(\geq\) pivot
• How do the elements get to the correct partition?
 › Choose an element from the array as the pivot
 › Make one pass through the rest of the array and swap as needed to put elements in partitions

Partitioning: Choosing the pivot

• One implementation (there are others)
 › median3 finds pivot and sorts left, center, right
 • Median3 takes the median of leftmost, middle, and rightmost elements
 • An alternative is to choose the pivot randomly (need a random number generator; “expensive”)
 • Another alternative is to choose the first element (but can be very bad. Why?)
 › Swap pivot with next to last element

Partitioning in-place

› Set pointers i and j to start and end of array
› Increment i until you hit element \(A[i] >\) pivot
› Decrement j until you hit elmt \(A[j] <\) pivot
› Swap \(A[i]\) and \(A[j]\)
› Repeat until i and j cross
› Swap pivot (at \(A[N-2]\)) with \(A[i]\)

Example
Choose the pivot as the median of three

Move i to the right up to \(A[i]\) larger than pivot. Move j to the left up to \(A[j]\) smaller than pivot. Swap

Place the largest at the right and the smallest at the left. Swap pivot with next to last element.
Recursive Quicksort

Quicksort(A[]): integer array, left, right : integer): {
 pivotindex : integer;
 if left + CUTOFF ≤ right then
 pivot := median3(A, left, right);
 pivotindex := Partition(A, left, right-1, pivot);
 Quicksort(A, left, pivotindex – 1);
 Quicksort(A, pivotindex + 1, right);
 else
 Insertionsort(A, left, right);
 }

Don't use quicksort for small arrays. CUTOFF = 10 is reasonable.

Quick sort Best Case Performance

• Algorithm always chooses best pivot and splits sub-arrays in half at each recursion
 › T(0) = T(1) = O(1)
 › constant time if 0 or 1 element
 › For N > 1, 2 recursive calls plus linear time for partitioning
 › T(N) = 2T(N/2) + O(N)
 › Same recurrence relation as Mergesort
 › T(N) = O(N log N)

Quick sort Worst Case Performance

• Algorithm always chooses the worst pivot – one sub-array is empty at each recursion
 › T(N) ≤ a for N ≤ C
 › T(N) ≤ T(N-1) + bN
 › ≤ T(N-2) + b(N-1) + bN
 › ≤ T(C) + b(C+1) + ... + bN
 › ≤ a + b(C + (C+1) + (C+2) + ... + N)
 › T(N) = O(N^2)

Fortunately, average case performance is O(N log N) (see text for proof)

Properties of Quicksort

• Not stable because of long distance swapping.
• No iterative version (without using a stack).
• Pure quicksort not good for small arrays.
• “In-place”, but uses auxiliary storage because of recursive call (O(logn) space).
• O(n log n) average case performance, but O(n^2) worst case performance.

Folklore

• “Quicksort is the best in-memory sorting algorithm.”
• Truth
 › Quicksort uses very few comparisons on average.
 › Quicksort does have good performance in the memory hierarchy.
 • Small footprint
 • Good locality