Hashing

CSE 373
Data Structures

Readings

• Reading
 › Goodrich and Tamassia, Chapter 8

The Need for Speed

• Data structures we have looked at so far
 › Use comparison operations to find items
 › Need O(log N) time for Find and Insert
• In real world applications, N is typically between 100 and 100,000 (or more)
 › log N is between 6.6 and 16.6
• Hash tables are an abstract data type designed for O(1) Find and Inserts

Fewer Functions Faster

• compare lists and stacks
 › by reducing the flexibility of what we are allowed to do, we can increase the performance of the remaining operations
 › insert(L,X) into a list versus push(S,X) onto a stack
• compare trees and hash tables
 › trees provide for known ordering of all elements
 › hash tables just let you (quickly) find an element

Limited Set of Hash Operations

• For many applications, a limited set of operations is all that is needed
 › Insert, Find, and Delete
 › Note that no ordering of elements is implied
• For example, a compiler needs to maintain information about the symbols in a program
 › user defined
 › language keywords

Direct Address Tables

• Direct addressing using an array is very fast
• Assume
 › keys are integers in the set U=\{0,1,...,m-1\}
 › m is small
 › no two elements have the same key
• Then just store each element at the array location array[key]
 › search, insert, and delete are trivial
Direct Access Table

![Diagram of Direct Access Table]

Direct Address Implementation

```c
Delete(Table T, ElementType x)
T[key[x]] = NULL  //key[x] is an integer

Insert(Table t, ElementType x)
T[key[x]] = x

Find(Table t, Key k)
return T[k]
```

An Issue

- If most keys in U are used
 - direct addressing can work very well (m small)
- The largest possible key in U, say m, may be much larger than the number of elements actually stored (|U| much greater than |K|)
 - the table is very sparse and wastes space
 - in worst case, table too large to have in memory
- If most keys in U are not used
 - need to map U to a smaller set closer in size to K

Mapping the Keys

![Diagram of Mapping the Keys]

Hashing Schemes

- We want to store N items in a table of size M, at a location computed from the key K (which may not be numeric!)
- Hash function
 - Method for computing table index from key
- Need of collision resolution strategy
 - How to handle two keys that hash to the same index

“Find” an Element in an Array

- Data records can be stored in arrays.
 - A[0] = (“CHEM 110”, Size 89)
- Class size for CSE 373?
 - Linear search the array – O(N) worst case time
 - Binary search - O(log N) worst case
Go Directly to the Element

• What if we could directly index into the array using the key?
 › A["CSE 373"] = {Size 85}
• Main idea behind hash tables
 › Use a key based on some aspect of the data to index directly into an array
 › O(1) time to access records

Indexing into Hash Table

• Need a fast hash function to convert the element key (string or number) to an integer (the hash value) (i.e., map from U to index)
 › Then use this value to index into an array
 › Hash("CSE 373") = 157, Hash("CSE 143") = 101
• Output of the hash function
 › must always be less than size of array
 › should be as evenly distributed as possible

Choosing the Hash Function

• What properties do we want from a hash function?
 › Want universe of hash values to be distributed randomly to minimize collisions
 › Don’t want systematic nonrandom pattern in selection of keys to lead to systematic collisions
 › Want hash value to depend on all values in entire key and their positions

The Key Values are Important

• Notice that one issue with all the hash functions is that the actual content of the key set matters
• The elements in K (the keys that are used) are quite possibly a restricted subset of U, not just a random collection
 › variable names, words in the English language, reserved keywords, telephone numbers, etc, etc

Simple Hashes

• It’s possible to have very simple hash functions if you are certain of your keys
• For example,
 › suppose we know that the keys s will be real numbers uniformly distributed over 0 ≤ s < 1
 › Then a very fast, very good hash function is
 • hash(s) = floor(s · m)
 • where m is the size of the table

Example of a Very Simple Mapping

• hash(s) = floor(s · m) maps from 0 ≤ s < 1 to 0..m-1
 › m = 10

Note the even distribution. There are collisions, but we will deal with them later.
Perfect Hashing

- In some cases it’s possible to map a known set of keys uniquely to a set of index values.
- You must know every single key beforehand and be able to derive a function that works one-to-one.

Mod Hash Function

- One solution for a less constrained key set.
 - modular arithmetic
 - $a \mod size$
 - remainder when "$a" is divided by "size"
 - in C or Java this is written as $r = a \ % \ size$;
 - If TableSize = 251
 - 408 mod 251 = 157
 - 352 mod 251 = 101

Modulo Mapping

- $a \mod m$ maps from integers to $0..m-1$
 - one to one? no
 - onto? yes

Hashing Integers

- If keys are integers, we can use the hash function:
 - $Hash(key) = key \mod TableSize$

- Problem 1: What if TableSize is 11 and all keys are 2 repeated digits? (eg, 22, 33, …)
 - all keys map to the same index
 - Need to pick TableSize carefully; often, a prime number

Nonnumerical Keys

- Many hash functions assume that the universe of keys is the natural numbers $\mathbb{N} = \{0, 1, …\}$
- Need to find a function to convert the actual key to a natural number quickly and effectively before or during the hash calculation
- Generally work with the ASCII character codes when converting strings to numbers

Characters to Integers

- If keys are strings can get an integer by adding up ASCII values of characters in key
- We are converting a very large string $c_0c_1c_2…c_n$ to a relatively small number $c_0 + c_1 + c_2 + … + c_n \mod size$.

```plaintext
ASCII value
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
```
Hash Must be Onto Table

- **Problem 2**: What if TableSize is 10,000 and all keys are 8 or less characters long?
 - chars have values between 0 and 127
 - Keys will hash only to positions 0 through $8 \times 127 = 1016$
- Need to distribute keys over the entire table or the extra space is wasted

Problems with Adding Characters

- Problems with adding up character values for string keys
 - If string keys are short, will not hash evenly to all of the hash table
 - Different character combinations hash to same value
 - "abc", "bca", and "cab" all add up to the same value (recall this was Problem 1)

Characters as Integers

- A character string can be thought of as a base 256 number. The string $c_1c_2\ldots c_n$ can be thought of as the number $c_n + 256c_{n-1} + 256^2c_{n-2} + \ldots + 256^{n-1}c_1$
- Use Horner's Rule to Hash! (see Ex. 2.14)

```
    r := 0;
    for i = 1 to n do
        r := (c[i] + 256*r) mod TableSize
```

Collisions

- A collision occurs when two different keys hash to the same value
 - E.g. For TableSize = 17, the keys 18 and 35 hash to the same value for the mod17 hash function
 - $18 \mod 17 = 1$ and $35 \mod 17 = 1$
- Cannot store both data records in the same slot in array!

Collision Resolution

- Separate Chaining
 - Use data structure (such as a linked list) to store multiple items that hash to the same slot
- Open addressing (or probing)
 - search for empty slots using a second function and store item in first empty slot that is found

Resolution by Chaining

- Each hash table cell holds pointer to linked list of records with same hash value
- Collision: Insert item into linked list
- To Find an item: compute hash value, then do Find on linked list
- Note that there are potentially as many as TableSize lists
Why Lists?

- Can use List ADT for Find/Insert/Delete in linked list
 - O(N) runtime where N is the number of elements in the particular chain
- Can also use Binary Search Trees
 - O(log N) time instead of O(N)
 - But the number of elements to search through should be small (otherwise the hashing function is bad or the table is too small)
 - generally not worth the overhead of BSTs

Load Factor of a Hash Table

- Let N = number of items to be stored
- Load factor $\lambda = N / \text{TableSize}$
 - TableSize = 101 and N = 505, then $\lambda = 5$
 - TableSize = 101 and N = 10, then $\lambda = 0.1$
- Average length of chained list = λ and so average time for accessing an item = $O(1) + O(\lambda)$
 - Want λ to be smaller than 1 but close to 1 if good hashing function (i.e. TableSize $\approx N$)
 - With chaining hashing continues to work for $\lambda > 1$

Resolution by Open Addressing

- No links, all keys are in the table
 - reduced overhead saves space
- When searching for X, check locations $h_1(X)$, $h_2(X)$, $h_3(X)$, ... until either
 - X is found; or
 - we find an empty location (X not present)
- Various flavors of open addressing differ in which probe sequence they use

Cell Full? Keep Looking.

- $h_i(X) = (\text{Hash}(X) + F(i)) \mod \text{TableSize}$
 - Define $F(0) = 0$
- F is the collision resolution function.
 - Some possibilities:
 - Linear: $F(i) = i$
 - Quadratic: $F(i) = i^2$
 - Double Hashing: $F(i) = i \cdot \text{Hash}_2(X)$

Linear Probing

- When searching for K, check locations $h(K)$, $h(K)+1$, $h(K)+2$, ... $\mod \text{TableSize}$ until either
 - K is found; or
 - we find an empty location (K not present)
- If table is very sparse, almost like separate chaining.
- When table starts filling, we get clustering but still constant average search time.
- Full table \Rightarrow infinite loop.

Primary Clustering Problem

- Once a block of a few contiguous occupied positions emerges in table, it becomes a “target” for subsequent collisions
- As clusters grow, they also merge to form larger clusters.
- Primary clustering: elements that hash to different cells probe same alternative cells
Quadratic Probing

- When searching for x, check locations $h_1(x)$, $h_1(x) + 1^2$, $h_1(x) + 2^2, \ldots \mod \text{TableSize}$ until either
 - x is found; or
 - we find an empty location (x not present)
- No primary clustering but secondary clustering possible

Double Hashing

- When searching for x, check locations $h_1(x)$, $h_1(x) + h_2(x)$, $h_1(x) + 2h_2(x), \ldots \mod \text{TableSize}$ until either
 - x is found; or
 - we find an empty location (x not present)
- Must be careful about $h_2(x)$
 - Not 0 and not a divisor of m
 - eg, $h_1(k) = k \mod m$, $h_2(k) = 1 + (k \mod m)$
 where m_2 is slightly less than m

Rules of Thumb

- Separate chaining is simple but wastes space...
- Linear probing uses space better, is fast when tables are sparse
- Double hashing is space efficient, fast (get initial hash and increment at the same time), needs careful implementation

Rehashing – Rebuild the Table

- Need to use lazy deletion if we use probing (why?)
 - Need to mark array slots as deleted after Delete
 - Consequently, deleting doesn’t make the table any less full than it was before the delete
- If table gets too full ($\lambda \approx 1$) or if many deletions have occurred, running time gets too long and inserts may fail

Rehashing

- Build a bigger hash table of approximately twice the size when λ exceeds a particular value
 - Go through old hash table, ignoring items marked deleted
 - Recompute hash value for each non-deleted key and put the item in new position in new table
 - Cannot just copy data from old table because the bigger table has a new hash function
- Running time is $O(N)$ but happens very infrequently
 - Not good for real-time safety critical applications

Rehashing Example

- Open hashing – $h_1(x) = x \mod 5$ rehashes to $h_2(x) = x \mod 11$.
 - $\lambda = 1$
 - 25 37 83 52 98
 - $\lambda = 5/11$
 - 25 37 83 52 98
Caveats

- Hash functions are very often the cause of performance bugs.
- Hash functions often make the code not portable.
- If a particular hash function behaves badly on your data, then pick another.
- Always check where the time goes