Hashing

CSE 373
Data Structures

Readings

• Reading
 › Goodrich and Tamassia, Chapter 8
The Need for Speed

• Data structures we have looked at so far
 › Use comparison operations to find items
 › Need O(log N) time for Find and Insert
• In real world applications, N is typically between 100 and 100,000 (or more)
 › log N is between 6.6 and 16.6
• Hash tables are an abstract data type designed for O(1) Find and Inserts

Fewer Functions Faster

• compare lists and stacks
 › by reducing the flexibility of what we are allowed to do, we can increase the performance of the remaining operations
 › insert(L,X) into a list versus push(S,X) onto a stack
• compare trees and hash tables
 › trees provide for known ordering of all elements
 › hash tables just let you (quickly) find an element
Limited Set of Hash Operations

- For many applications, a limited set of operations is all that is needed
 - Insert, Find, and Delete
 - Note that no ordering of elements is implied
- For example, a compiler needs to maintain information about the symbols in a program
 - User defined
 - Language keywords

Direct Address Tables

- Direct addressing using an array is very fast
- Assume
 - Keys are integers in the set $U=\{0,1,\ldots,m-1\}$
 - m is small
 - No two elements have the same key
- Then just store each element at the array location $\text{array}[\text{key}]$
 - Search, insert, and delete are trivial
Direct Access Table

![Diagram of Direct Access Table]

Direct Address Implementation

Delete(Table T, ElementType x)
T[key[x]] = NULL //key[x] is an integer

Insert(Table t, ElementType x)
T[key[x]] = x

Find(Table t, Key k)
return T[k]
An Issue

- If most keys in U are used
 - direct addressing can work very well (m small)
- The largest possible key in U, say m, may be much larger than the number of elements actually stored (|U| much greater than |K|)
 - the table is very sparse and wastes space
 - in worst case, table too large to have in memory
- If most keys in U are not used
 - need to map U to a smaller set closer in size to K

Mapping the Keys
Hashing Schemes

• We want to store N items in a table of size M, at a location computed from the key K (which may not be numeric!)
• Hash function
 › Method for computing table index from key
• Need of a collision resolution strategy
 › How to handle two keys that hash to the same index

“Find” an Element in an Array

• Data records can be stored in arrays.
 › A[0] = {“CHEM 110”, Size 89}
 › A[17] = {“CSE 373”, Size 85}
• Class size for CSE 373?
 › Linear search the array – O(N) worst case time
 › Binary search - O(log N) worst case
Go Directly to the Element

• What if we could directly index into the array using the key?
 › A[“CSE 373”] = {Size 85}
• Main idea behind hash tables
 › Use a key based on some aspect of the data to index directly into an array
 › O(1) time to access records

Indexing into Hash Table

• Need a fast hash function to convert the element key (string or number) to an integer (the hash value) (i.e, map from U to index)
 › Then use this value to index into an array
 › Hash(“CSE 373”) = 157, Hash(“CSE 143”) = 101
• Output of the hash function
 › must always be less than size of array
 › should be as evenly distributed as possible
Choosing the Hash Function

• What properties do we want from a hash function?
 › Want universe of hash values to be distributed randomly to minimize collisions
 › Don’t want systematic nonrandom pattern in selection of keys to lead to systematic collisions
 › Want hash value to depend on all values in entire key and their positions

The Key Values are Important

• Notice that one issue with all the hash functions is that the actual content of the key set matters
• The elements in K (the keys that are used) are quite possibly a restricted subset of U, not just a random collection
 › variable names, words in the English language, reserved keywords, telephone numbers, etc, etc
Simple Hashes

- It's possible to have very simple hash functions if you are certain of your keys
- For example,
 - suppose we know that the keys s will be real numbers uniformly distributed over $0 \leq s < 1$
 - Then a very fast, very good hash function is
 - $\text{hash}(s) = \text{floor}(s \cdot m)$
 - where m is the size of the table

Example of a Very Simple Mapping

- $\text{hash}(s) = \text{floor}(s \cdot m)$ maps from $0 \leq s < 1$ to $0..m-1$
 - $m = 10$

<table>
<thead>
<tr>
<th>s</th>
<th>floor($s \cdot m$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>0.3</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0.6</td>
<td>0</td>
</tr>
<tr>
<td>0.7</td>
<td>0</td>
</tr>
<tr>
<td>0.8</td>
<td>0</td>
</tr>
<tr>
<td>0.9</td>
<td>0</td>
</tr>
</tbody>
</table>

Note the even distribution. There are collisions, but we will deal with them later.
Perfect Hashing

- In some cases it's possible to map a known set of keys uniquely to a set of index values
- You must know every single key beforehand and be able to derive a function that works one-to-one

Mod Hash Function

- One solution for a less constrained key set
 - modular arithmetic
 - $a \mod size$
 - remainder when "a" is divided by "size"
 - in C or Java this is written as $r = a \% size$;
 - If TableSize = 251
 - $408 \mod 251 = 157$
 - $352 \mod 251 = 101$
Modulo Mapping

- $a \mod m$ maps from integers to 0..m-1
 - one to one? no
 - onto? yes

<table>
<thead>
<tr>
<th>x</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>x mod 4</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Hashing Integers

- If keys are integers, we can use the hash function:
 - $\text{Hash}(\text{key}) = \text{key} \mod \text{TableSize}$
- **Problem 1**: What if TableSize is 11 and all keys are 2 repeated digits? (eg, 22, 33, …)
 - all keys map to the same index
 - Need to pick TableSize carefully: often, a prime number
Nonnumerical Keys

- Many hash functions assume that the universe of keys is the natural numbers $\mathbb{N} = \{0, 1, \ldots\}$
- Need to find a function to convert the actual key to a natural number quickly and effectively before or during the hash calculation
- Generally work with the ASCII character codes when converting strings to numbers

Characters to Integers

- If keys are strings can get an integer by adding up ASCII values of characters in key
- We are converting a very large string $c_0c_1c_2 \ldots c_n$ to a relatively small number $c_0 + c_1 + c_2 + \ldots + c_n \mod \text{size}$.
Hash Must be Onto Table

- **Problem 2**: What if *TableSize* is 10,000 and all keys are 8 or less characters long?
 - chars have values between 0 and 127
 - Keys will hash only to positions 0 through $8 \times 127 = 1016$
- Need to distribute keys over the entire table or the extra space is wasted

Problems with Adding Characters

- Problems with adding up character values for string keys
 - If string keys are short, will not hash evenly to all of the hash table
 - Different character combinations hash to same value
 - “abc”, “bca”, and “cab” all add up to the same value (recall this was Problem 1)
Characters as Integers

• A character string can be thought of as a base 256 number. The string \(c_1c_2\ldots c_n\) can be thought of as the number
\[c_n + 256c_{n-1} + 256^2c_{n-2} + \ldots + 256^{n-1}c_1\]
• Use Horner’s Rule to Hash! (see Ex. 2.14)

\[
\begin{align*}
 r &= 0; \\
 \text{for } i &= 1 \text{ to } n \text{ do} \\
 r &= (c[i] + 256*r) \mod \text{TableSize}
\end{align*}
\]

Collisions

• A collision occurs when two different keys hash to the same value
 › E.g. For TableSize = 17, the keys 18 and 35 hash to the same value for the mod17 hash function
 › 18 mod 17 = 1 and 35 mod 17 = 1
• Cannot store both data records in the same slot in array!
Collision Resolution

- Separate Chaining
 - Use data structure (such as a linked list) to store multiple items that hash to the same slot

- Open addressing (or probing)
 - search for empty slots using a second function and store item in first empty slot that is found

Resolution by Chaining

- Each hash table cell holds pointer to linked list of records with same hash value
- Collision: Insert item into linked list
- To Find an item: compute hash value, then do Find on linked list
- Note that there are potentially as many as TableSize lists
Why Lists?

- Can use List ADT for Find/Insert/Delete in linked list
 - $O(N)$ runtime where N is the number of elements in the particular chain
- Can also use Binary Search Trees
 - $O(\log N)$ time instead of $O(N)$
 - But the number of elements to search through should be small (otherwise the hashing function is bad or the table is too small)
 - generally not worth the overhead of BSTs

Load Factor of a Hash Table

- Let $N =$ number of items to be stored
- Load factor $\lambda = \frac{N}{\text{TableSize}}$
 - TableSize = 101 and $N = 505$, then $\lambda = 5$
 - TableSize = 101 and $N = 10$, then $\lambda = 0.1$
- Average length of chained list = λ and so average time for accessing an item = $O(1) + O(\lambda)$
 - Want λ to be smaller than 1 but close to 1 if good hashing function (i.e. TableSize $\approx N$)
 - With chaining hashing continues to work for $\lambda > 1$
Resolution by Open Addressing

- No links, all keys are in the table
 - reduced overhead saves space
- When searching for \(x \), check locations
 \(h_1(x), h_2(x), h_3(x), \ldots \) until either
 - \(x \) is found; or
 - we find an empty location (\(x \) not present)
- Various flavors of open addressing differ in which probe sequence they use

Cell Full? Keep Looking.

- \(h_i(x) = (\text{Hash}(x) + F(i)) \mod \text{TableSize} \)
 - Define \(F(0) = 0 \)
- \(F \) is the collision resolution function. Some possibilities:
 - Linear: \(F(i) = i \)
 - Quadratic: \(F(i) = i^2 \)
 - Double Hashing: \(F(i) = i \cdot \text{Hash}_2(X) \)
Linear Probing

- When searching for K, check locations $h(K)$, $h(K)+1$, $h(K)+2$, ... mod TableSize until either
 - K is found; or
 - we find an empty location (K not present)
- If table is very sparse, almost like separate chaining.
- When table starts filling, we get clustering but still constant average search time.
- Full table \Rightarrow infinite loop.

Primary Clustering Problem

- Once a block of a few contiguous occupied positions emerges in table, it becomes a “target” for subsequent collisions
- As clusters grow, they also merge to form larger clusters.
- Primary clustering: elements that hash to different cells probe same alternative cells
Quadratic Probing

- When searching for \(x \), check locations \(h_1(x) \), \(h_1(x)+1^2 \), \(h_1(x)+2^2 \), \(h_1(x)+2^2 \), \ldots \ mod TableSize until either
 - \(x \) is found; or
 - we find an empty location (\(x \) not present)
- No primary clustering but secondary clustering possible

Double Hashing

- When searching for \(x \), check locations \(h_1(x) \), \(h_1(x)+h_2(x) \), \(h_1(x)+2\cdot h_2(x) \), \ldots \ mod Tablesize until either
 - \(x \) is found; or
 - we find an empty location (\(x \) not present)
- Must be careful about \(h_2(x) \)
 - Not 0 and not a divisor of \(m \)
 - eg, \(h_1(k) = k \ mod \ m_1 \), \(h_2(k) = 1 + (k \ mod \ m_2) \)
 where \(m_2 \) is slightly less than \(m_1 \)
Rules of Thumb

- Separate chaining is simple but wastes space...
- Linear probing uses space better, is fast when tables are sparse
- Double hashing is space efficient, fast (get initial hash and increment at the same time), needs careful implementation

Rehashing – Rebuild the Table

- Need to use lazy deletion if we use probing (why?)
 - Need to mark array slots as deleted after Delete
 - Consequently, deleting doesn’t make the table any less full than it was before the delete
- If table gets too full ($\lambda \approx 1$) or if many deletions have occurred, running time gets too long and Inserts may fail
Rehashing

• Build a bigger hash table of approximately twice the size when λ exceeds a particular value
 › Go through old hash table, ignoring items marked deleted
 › Recompute hash value for each non-deleted key and put the item in new position in new table
 › Cannot just copy data from old table because the bigger table has a new hash function
• Running time is $O(N)$ but happens very infrequently
 › Not good for real-time safety critical applications

Rehashing Example

• Open hashing – $h_1(x) = x \mod 5$ rehashes to $h_2(x) = x \mod 11$.

 \[
 \begin{array}{c}
 \lambda = 1 \\
 0 & 1 & 2 & 3 & 4 \\
 25 & 37 & 83 & 52 & 98 \\
 \end{array}
 \]

 \[
 \begin{array}{c}
 \lambda = 5/11 \\
 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
 25 & 37 & 83 & 52 & 98 \\
 \end{array}
 \]
Caveats

- Hash functions are very often the cause of performance bugs.
- Hash functions often make the code not portable.
- If a particular hash function behaves badly on your data, then pick another.
- Always check where the time goes