Directed Graph Algorithms

CSE 373

Readings

- Reading
 - Goodrich and Tamassia, chapter 12

Topological Sort

Problem: Find an order in which all these courses can be taken.

Example: 142 → 143 → 378 → 370 → 321 → 341 → 322 → 326 → 421 → 401

In order to take a course, you must take **all** of its prerequisites first.

Topological Sort

Given a digraph $G = (V, E)$, find a linear ordering of its vertices such that:

- for any edge (v, w) in E, v precedes w in the ordering

Any linear ordering in which all the arrows go to the right is a valid solution.

Note that F can go anywhere in this list because it is not connected. Also, the solution is not unique.

Topo sort - good example

Topo sort - bad example

Any linear ordering in which an arrow goes to the left is not a valid solution.

NO!
Paths and Cycles

- Given a digraph $G = (V,E)$, a path is a sequence of vertices $v_1,v_2, ..., v_k$ such that:
 - (v_i,v_{i+1}) in E for $1 \leq i < k$
 - path length = number of edges in the path
 - path cost = sum of costs of each edge
- A path is a cycle if:
 - $k > 1$; $v_1 = v_k$
- G is acyclic if it has no cycles.

Only acyclic graphs can be topologically sorted.

- A directed graph with a cycle cannot be topologically sorted.

Topo sort algorithm - 1

Step 1: Identify vertices that have no incoming edges
- The “in-degree” of these vertices is zero

Topo sort algorithm - 1a

Step 1: Identify vertices that have no incoming edges
- If no such vertices, graph has only cycle(s) (cyclic graph)
- Topological sort not possible – Halt.

Example of a cyclic graph

Topo sort algorithm - 1b

Step 1: Identify vertices that have no incoming edges
- Select one such vertex

Topo sort algorithm - 2

Step 2: Delete this vertex of in-degree 0 and all its outgoing edges from the graph. Place it in the output.
Continue until done

Repeat Step 1 and Step 2 until graph is empty

Select A. Copy to sorted list. Delete A and its edges.

Select B. Copy to sorted list. Delete B and its edges.

Select C. Copy to sorted list. Delete C and its edges.

Select D. Copy to sorted list. Delete D and its edges.

Select E. Copy to sorted list. Delete E and its edges. Select F. Copy to sorted list. Delete F and its edges.

Done
Implementation

Assume adjacency list representation

Calculate In-degrees

In-Degree array; or add a field to array A

Calculate In-degrees

for \(i = 1 \) to \(n \) do
\(D[i] := 0 \);
endfor

for \(i = 1 \) to \(n \) do
\(x := A[i] \);
while \(x \neq \) null do
\(D[x.value] := D[x.value] + 1 \);
\(x := x.next \);
endwhile
endfor

Maintaining Degree 0 Vertices

Key idea: Initialize and maintain a queue (or stack) of vertices with In-Degree 0

Topo Sort using a Queue

(breadth-first)

After each vertex is output, when updating In-Degree array, enqueue any vertex whose In-Degree becomes zero

Topological Sort Algorithm

1. Store each vertex’s In-Degree in an array \(D \)
2. Initialize queue with all “in-degree=0” vertices
3. While there are vertices remaining in the queue:
 (a) Dequeue and output a vertex
 (b) Reduce In-Degree of all vertices adjacent to it by 1
 (c) Enqueue any of these vertices whose In-Degree became zero
4. If all vertices are output then success, otherwise there is a cycle.
Some Detail

Main loop
while notEmpty(Q) do
 x := Dequeue(Q)
 Output(x)
 y := A[x]
 while y ≠ null do
 D[y.value] := D[y.value] – 1;
 if D[y.value] = 0 then Enqueue(Q,y.value);
 y := y.next;
 endwhile
endwhile

Topological Sort Analysis

• Initialize In-Degree array: O(|V| + |E|)
• Initialize Queue with In-Degree 0 vertices: O(|V|)
• Dequeue and output vertex:
 • |V| vertices, each takes only O(1) to dequeue and
 output: O(|V|)
• Reduce In-Degree of all vertices adjacent to a vertex
 and Enqueue any In-Degree 0 vertices:
 • O(|E|)
• For input graph G=(V,E) run time = O(|V| + |E|)
 • Linear time!

Topo Sort using a Stack (depth first)

After each vertex is output, when updating In-Degree array,
push any vertex whose In-Degree becomes zero

Recall Path cost , Path length

• Path cost: the sum of the costs of each edge
• Path length: the number of edges in the path
 • Path length is the unweighted path cost

Shortest Path Problems

• Given a graph G = (V, E) and a “source” vertex s
 in V, find the minimum cost paths from s to every
 vertex in V
• Many variations:
 › unweighted vs. weighted
 › cyclic vs. acyclic
 › pos. weights only vs. pos. and neg. weights
 › etc

Why study shortest path problems?

• Traveling on a budget: What is the cheapest
 airline schedule from Seattle to city X?
• Optimizing routing of packets on the internet:
 › Vertices are routers and edges are network links with
 different delays. What is the routing path with
 smallest total delay?
• Shipping: Find which highways and roads to
 take to minimize total delay due to traffic
 • etc.
Unweighted Shortest Path

Problem: Given a "source" vertex s in an unweighted directed graph $G = (V, E)$, find the shortest path from s to all vertices in G.

- Only interested in path lengths

Breadth-First Search Solution

- **Basic Idea:** Starting at node s, find vertices that can be reached using $0, 1, 2, 3, ..., N-1$ edges (works even for cyclic graphs!)

Breadth-First Search Alg.

- Uses a queue to track vertices that are "nearby"
- Source vertex is s

```
Distance[s] := 0
Enqueue(Q,s); Mark(s) //After a vertex is marked once it won't be enqueued again
while queue is not empty do
  X := Dequeue(Q);
  for each vertex Y adjacent to X do
    if Y is unmarked then
      Distance[Y] := Distance[X] + 1;
      Previous[Y] := X; //if we want to record paths
      Enqueue(Q,Y); Mark(Y);
```

- Running time = $O(|V| + |E|)$

Example: Shortest Path length

Queue $Q = C$

Example (ct'd)

Queue $Q = C D E$

Previous pointer Indicate the vertex is marked

Example (ct'd)

$Q = D E B$
What if edges have weights?

- Breadth First Search does not work anymore
 - minimum cost path may have more edges than minimum length path

Shortest path (length)
from C to A:
C à A (cost = 9)

Minimum Cost Path = C à E à D à A
(cost = 8)

Dijkstra’s Algorithm for Weighted Shortest Path

- Classic algorithm for solving shortest path in weighted graphs (without negative weights)
- A greedy algorithm (irrevocably makes decisions without considering future consequences)
- Each vertex has a cost for path from initial vertex

Basic Idea of Dijkstra’s Algorithm

- Find the vertex with smallest cost that has not been “marked” yet.
- Mark it and compute the cost of its neighbors.
- Do this until all vertices are marked.
- Note that each step of the algorithm we are marking one vertex and we won’t change our decision: hence the term “greedy” algorithm