Directed Graph Algorithms

CSE 373

Readings

• Reading
 › Goodrich and Tamassia, chapter 12
Problem: Find an order in which all these courses can be taken.

Example: 142 → 143 → 378 → 370 → 321 → 341 → 322 → 326 → 421 → 401

In order to take a course, you must take all of its prerequisites first.

Topological Sort

Given a digraph $G = (V, E)$, find a linear ordering of its vertices such that:

for any edge (v, w) in E, v precedes w in the ordering.
Any linear ordering in which all the arrows go to the right is a valid solution.

Note that F can go anywhere in this list because it is not connected. Also the solution is not unique.

Topo sort - bad example

Any linear ordering in which an arrow goes to the left is not a valid solution.
Paths and Cycles

• Given a digraph G = (V,E), a path is a sequence of vertices v₁, v₂, ..., vₖ such that:
 › (vᵢ, vᵢ₊₁) ∈ E for 1 ≤ i < k
 › path length = number of edges in the path
 › path cost = sum of costs of each edge

• A path is a cycle if:
 › k > 1; v₁ = vₖ

• G is acyclic if it has no cycles.

Only acyclic graphs can be topo. sorted

• A directed graph with a cycle cannot be topologically sorted.

[Diagram of a directed graph with four vertices: A, B, C, D, and E, showing cycles and directed edges.]
Topo sort algorithm - 1

Step 1: Identify vertices that have no incoming edges
- The “in-degree” of these vertices is zero

![Diagram of a directed graph](image)

Topo sort algorithm - 1a

Step 1: Identify vertices that have no incoming edges
- If no such vertices, graph has only cycle(s) (cyclic graph)
- Topological sort not possible – Halt.

![Diagram of a cyclic graph](image)
Topo sort algorithm - 1b

Step 1: Identify vertices that have no incoming edges
- Select one such vertex

[Diagram of a directed graph with vertices A, B, C, D, E, and F, with edges A→B, B→C, C→E, D→E, and F→E.]

Topo sort algorithm - 2

Step 2: Delete this vertex of in-degree 0 and all its outgoing edges from the graph. Place it in the output.

[Diagram showing vertex A deleted from the graph with remaining vertices A, B, C, F, and E.]
Repeat Step 1 and Step 2 until graph is empty

Select B. Copy to sorted list. Delete B and its edges.
Select C. Copy to sorted list. Delete C and its edges.

Select D. Copy to sorted list. Delete D and its edges.
Select E. Copy to sorted list. Delete E and its edges.
Select F. Copy to sorted list. Delete F and its edges.

Done
Assume adjacency list representation

Implementation

Translation array

```
A B C D E F
```

Calculate In-degrees

In-Degree array; or add a field to array A
Calculate In-degrees

\[
\text{for } i = 1 \text{ to } n \text{ do } D[i] := 0; \text{ endfor}
\]
\[
\text{for } i = 1 \text{ to } n \text{ do}
\]
\[
\quad x := A[i];
\]
\[
\quad \text{while } x \neq \text{null do}
\]
\[
\quad \quad D[x.value] := D[x.value] + 1;
\]
\[
\quad \quad x := x.next;
\]
\[
\quad \text{endwhile}
\]
\[
\text{endfor}
\]

Key idea: Initialize and maintain a queue (or stack) of vertices with In-Degree 0.
Topo Sort using a Queue (breadth-first)

After each vertex is output, when updating In-Degree array, enqueue any vertex whose In-Degree becomes zero.

Topological Sort Algorithm

1. Store each vertex’s In-Degree in an array D
2. Initialize queue with all “in-degree=0” vertices
3. While there are vertices remaining in the queue:
 (a) Dequeue and output a vertex
 (b) Reduce In-Degree of all vertices adjacent to it by 1
 (c) Enqueue any of these vertices whose In-Degree became zero
4. If all vertices are output then success, otherwise there is a cycle.
Some Detail

Main Loop
while notEmpty(Q) do
 x := Dequeue(Q)
 Output(x)
 y := A[x];
 while y ≠ null do
 D[y.value] := D[y.value] – 1;
 if D[y.value] = 0 then Enqueue(Q,y.value);
 y := y.next;
 endwhile
endwhile

Topological Sort Analysis

• Initialize In-Degree array: O(|V| + |E|)
• Initialize Queue with In-Degree 0 vertices: O(|V|)
• Dequeue and output vertex:
 › |V| vertices, each takes only O(1) to dequeue and output: O(|V|)
• Reduce In-Degree of all vertices adjacent to a vertex and Enqueue any In-Degree 0 vertices:
 › O(|E|)
• For input graph G=(V,E) run time = O(|V| + |E|)
 › Linear time!
After each vertex is output, when updating In-Degree array, push any vertex whose In-Degree becomes zero

Recall Path cost , Path length

- **Path cost**: the sum of the costs of each edge
- **Path length**: the number of edges in the path
 - Path length is the unweighted path cost
Shortest Path Problems

- Given a graph \(G = (V, E) \) and a “source” vertex \(s \) in \(V \), find the minimum cost paths from \(s \) to every vertex in \(V \)
- Many variations:
 - unweighted vs. weighted
 - cyclic vs. acyclic
 - pos. weights only vs. pos. and neg. weights
 - etc

Why study shortest path problems?

- Traveling on a budget: What is the cheapest airline schedule from Seattle to city \(X \)?
- Optimizing routing of packets on the internet:
 - Vertices are routers and edges are network links with different delays. What is the routing path with smallest total delay?
- Shipping: Find which highways and roads to take to minimize total delay due to traffic
- etc.
Unweighted Shortest Path

Problem: Given a “source” vertex \(s \) in an unweighted directed graph \(G = (V, E) \), find the shortest path from \(s \) to all vertices in \(G \).

Breadth-First Search Solution

- Basic Idea: Starting at node \(s \), find vertices that can be reached using 0, 1, 2, 3, ..., \(N-1 \) edges (works even for cyclic graphs!)
Breadth-First Search Alg.

- Uses a queue to track vertices that are “nearby”
- source vertex is \(s \)

\[
\text{Distance}[s] := 0 \\
\text{Enqueue}(Q, s); \text{Mark}(s) //\text{After a vertex is marked once} \\
\text{// it won’t be enqueued again} \\
\text{while queue is not empty do} \\
\quad X := \text{Dequeue}(Q); \\
\quad \text{for each vertex } Y \text{ adjacent to } X \text{ do} \\
\quad\quad \text{if } Y \text{ is unmarked then} \\
\quad\quad\quad \text{Distance}[Y] := \text{Distance}[X] + 1; \\
\quad\quad\quad \text{Previous}[Y] := X; //\text{if we want to record paths} \\
\quad\quad\quad \text{Enqueue}(Q, Y); \text{Mark}(Y);
\]

- Running time = \(O(|V| + |E|) \)

Example: Shortest Path length

Queue \(Q = C \)
Example (ct’d)

Queue Q = A D E
Indicates the vertex is marked

Previous pointer

Example (ct’d)

Q = D E B
Example (ct’d)

Q = B G

Example (ct’d)

Q = F
Example (ct’d)

What if edges have weights?

• Breadth First Search does not work anymore
 › minimum cost path may have more edges than minimum length path

Shortest path (length) from C to A: C→A (cost = 9)

Minimum Cost Path = C→E→D→A (cost = 8)
Dijkstra’s Algorithm for Weighted Shortest Path

• Classic algorithm for solving shortest path in weighted graphs (without negative weights)
• A greedy algorithm (irrevocably makes decisions without considering future consequences)
• Each vertex has a cost for path from initial vertex

Basic Idea of Dijkstra’s Algorithm

• Find the vertex with smallest cost that has not been “marked” yet.
• Mark it and compute the cost of its neighbors.
• Do this until all vertices are marked.
• Note that each step of the algorithm we are marking one vertex and we won’t change our decision: hence the term “greedy” algorithm