AVL Trees

CSE 373
Data Structures

Readings

• Reading
 › Goodrich and Tamassia, Chapter 9
Binary Search Tree - Best Time

- All BST operations are $O(d)$, where d is tree depth
- minimum d is $d = \lfloor \log_2 N \rfloor$ for a binary tree with N nodes
 - What is the best case tree?
 - What is the worst case tree?
- So, best case running time of BST operations is $O(\log N)$

Binary Search Tree - Worst Time

- Worst case running time is $O(N)$
 - What happens when you insert elements in ascending order?
 - Insert: 2, 4, 6, 8, 10, 12 into an empty BST
 - Problem: Lack of "balance":
 - compare depths of left and right subtree
 - Unbalanced degenerate tree
Balanced and unbalanced BST

Is this “balanced”?

Approaches to balancing trees

• Don’t balance
 › May end up with some nodes very deep

• Strict balance
 › The tree must always be balanced perfectly

• Pretty good balance
 › Only allow a little out of balance

• Adjust on access
 › Self-adjusting
Balancing Binary Search Trees

- Many algorithms exist for keeping binary search trees balanced
 - Adelson-Velskii and Landis (AVL) trees (height-balanced trees)
 - Splay trees and other self-adjusting trees
 - B-trees and other multiway search trees

Perfect Balance

- Want a complete tree after every operation
 - tree is full except possibly in the lower right
- This is expensive
 - For example, insert 2 in the tree on the left and then rebuild as a complete tree
AVL - Good but not Perfect Balance

• AVL trees are height-balanced binary search trees
• **Balance factor** of a node
 › height(left subtree) - height(right subtree)
• An AVL tree has balance factor calculated at every node
 › For every node, heights of left and right subtree can differ by no more than 1
 › Store current heights in each node

Height of an AVL Tree

• \(N(h) = \text{minimum number of nodes in an AVL tree of height } h. \)
• **Basis**
 › \(N(0) = 1, N(1) = 2 \)
• **Induction**
 › \(N(h) = N(h-1) + N(h-2) + 1 \)
• **Solution** (recall Fibonacci analysis)
 › \(N(h) \geq \phi^h \) (\(\phi \approx 1.62 \))
Height of an AVL Tree

- \(N(h) > \phi^h \) (\(\phi \approx 1.62 \))
- Suppose we have \(n \) nodes in an AVL tree of height \(h \).
 - \(n \geq N(h) \) (because \(N(h) \) was the minimum)
 - \(n \geq \phi^h \) hence \(\log_\phi n \geq h \) (relatively well balanced tree!!)
 - \(h \leq 1.44 \log_2 n \) (i.e., Find takes \(O(\log n) \))

Node Heights

- Tree A (AVL)
 - height: 2
 - BF = 1 - 0 = 1
- Tree B (AVL)
 - height: 2
 - BF = 0 - 1 = -1

height of node = \(h \)
balance factor = \(h_{\text{left}} - h_{\text{right}} \)
empty height = -1
Node Heights after Insert 7

<table>
<thead>
<tr>
<th>Tree A (AVL)</th>
<th>Tree B (not AVL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- height of node = \(h \)
- balance factor = \(h_{left} - h_{right} \)
- empty height = -1

4/15/2004 CSE 373 - SP 04 -- AVL Trees 13

Insert and Rotation in AVL Trees

- Insert operation may cause balance factor to become 2 or −2 for some node
 - only nodes on the path from insertion point to root node have possibly changed in height
 - So after the Insert, go back up to the root node by node, updating heights
 - If a new balance factor (the difference \(h_{left} - h_{right} \)) is 2 or −2, adjust tree by rotation around the node

4/15/2004 CSE 373 - SP 04 -- AVL Trees 14
Let the node that needs rebalancing be α. There are 4 cases:

- **Outside Cases** (require single rotation):
 1. Insertion into **left subtree** of left child of α.
 2. Insertion into **right subtree** of right child of α.

- **Inside Cases** (require double rotation):
 3. Insertion into **right subtree** of left child of α.
 4. Insertion into **left subtree** of right child of α.

The rebalancing is performed through four separate rotation algorithms.
AVL Insertion: Outside Case

Consider a valid AVL subtree

Inserting into X destroys the AVL property at node j
AVL Insertion: Outside Case

Do a “right rotation”

Single right rotation

Do a “right rotation”
Outside Case Completed

“Right rotation” done!
("Left rotation" is mirror symmetric)

AVL property has been restored!

AVL Insertion: Inside Case

Consider a valid AVL subtree
AVL Insertion: Inside Case

Inserting into Y destroys the AVL property at node j

Does “right rotation” restore balance?

“Right rotation” does not restore balance... now k is out of balance
Consider the structure of subtree Y...

AVL Insertion: Inside Case

Y = node i and subtrees V and W
AVL Insertion: Inside Case

We will do a left-right "double rotation" ...

Double rotation: first rotation

left rotation complete
Double rotation: second rotation

Now do a right rotation

Double rotation: second rotation

Right rotation complete

Balance has been restored
Implementation

No need to keep the height; just the difference in height, i.e. the balance factor; this has to be modified on the path of insertion even if you don’t perform rotations

Once you have performed a rotation (single or double) you won’t need to go back up the tree

Single Rotation

```
RotateFromRight(n : reference node pointer) {
  p := n.right;
  n.right := p.left;
  p.left := n;
  n := p;
}
```

You also need to modify the heights or balance factors of n and p
Double Rotation

- Implement Double Rotation in two lines.

DoubleRotateFromRight(n : reference node pointer) {
 ????
}

Insertion in AVL Trees

- Insert at the leaf (as for all BST)
 - only nodes on the path from insertion point to root node have possibly changed in height
 - So after the Insert, go back up to the root node by node, updating heights
 - If a new balance factor (the difference $h_{\text{left}} - h_{\text{right}}$) is 2 or −2, adjust tree by rotation around the node
Insert in BST

Insert(T : reference tree pointer, x : element) : integer {
if T = null then
T := new tree; T.data := x; return 1; //the links to
//children are null case
T.data = x : return 0; //Duplicate do nothing
T.data > x : return Insert(T.left, x);
T.data < x : return Insert(T.right, x);
endcase
}

Insert in AVL trees

Insert(T : reference tree pointer, x : element) : {
if T = null then
(T := new tree; T.data := x; height := 0; return;

{T.data = x : return ; //Duplicate do nothing
 T.data > x : Insert(T.left, x);
if ((height(T.left)- height(T.right)) = 2){
if (T.left.data > x) then //outside case
T = RotatefromLeft (T);
else //inside case
T = DoubleRotatefromLeft (T);}
T.data < x : Insert(T.right, x);
code similar to the left case
Endcase
T.height := max(height(T.left),height(T.right)) +1;
return;
}
Example of Insertions in an AVL Tree

1. Insert 5, 40

Example of Insertions in an AVL Tree

Now Insert 45
Single rotation (outside case)

```
Imbalance

Now Insert 34
```

Double rotation (inside case)

```
Imbalance

Insertion of 34
```
AVL Tree Deletion

- Similar but more complex than insertion
 - Rotations and double rotations needed to rebalance
 - Imbalance may propagate upward so that many rotations may be needed.

Pros and Cons of AVL Trees

Arguments for AVL trees:
1. Search is $O(\log N)$ since AVL trees are always balanced.
2. Insertion and deletions are also $O(\log n)$
3. The height balancing adds no more than a constant factor to the speed of insertion.

Arguments against using AVL trees:
1. Difficult to program & debug; more space for balance factor.
2. Asymptotically faster but rebalancing costs time.
3. Most large searches are done in database systems on disk and use other structures (e.g. B-trees).
4. May be OK to have $O(N)$ for a single operation if total run time for many consecutive operations is fast (e.g. Splay trees).
Double Rotate From Right

DoubleRotateFromRight(n : reference node pointer) {
 RotateFromLeft(n.right);
 RotateFromRight(n);
}