Directed Graph Algorithms

CSE 373
Data Structures
Lecture 18
Readings

• Reading
 › Sections 9.2, 9.3 and 10.3.4
Topological Sort

Problem: Find an order in which all these courses can be taken.

Example: 142 → 143 → 378
→ 370 → 321 → 341 → 322
→ 326 → 421 → 401

In order to take a course, you must take all of its prerequisites first.
Topological Sort

Given a digraph $G = (V, E)$, find a linear ordering of its vertices such that:

for any edge (v, w) in E, v precedes w in the ordering
Topo sort - good example

Any linear ordering in which all the arrows go to the right is a valid solution.

Note that F can go anywhere in this list because it is not connected.
Also the solution is not unique.
Topo sort - bad example

Any linear ordering in which an arrow goes to the left is not a valid solution

NO!
Paths and Cycles

- Given a digraph $G = (V,E)$, a path is a sequence of vertices v_1,v_2, \ldots,v_k such that:
 - (v_i,v_{i+1}) in E for $1 \leq i < k$
 - path length = number of edges in the path
 - path cost = sum of costs of each edge
- A path is a cycle if:
 - $k > 1$; $v_1 = v_k$
- G is acyclic if it has no cycles.
Only acyclic graphs can be topo. sorted

- A directed graph with a cycle cannot be topologically sorted.
Step 1: Identify vertices that have no incoming edges

- The “in-degree” of these vertices is zero
Step 1: Identify vertices that have no incoming edges

- If *no such vertices*, graph has only *cycle(s)* (cyclic graph)
- Topological sort not possible – Halt.

Example of a cyclic graph
Step 1: Identify vertices that have no incoming edges
 • Select one such vertex

Select A

Diagrams: Digraphs - Lecture 18

Date: 3/3/03
Topo sort algorithm - 2

Step 2: Delete this vertex of in-degree 0 and all its outgoing edges from the graph. Place it in the output.
Continue until done

Repeat Step 1 and Step 2 until graph is empty

Select

D —> E
C —> E
B —> C
F —> A
Select B. Copy to sorted list. Delete B and its edges.
Select C. Copy to sorted list. Delete C and its edges.
Select D. Copy to sorted list. Delete D and its edges.
Select E. Copy to sorted list. Delete E and its edges.
Select F. Copy to sorted list. Delete F and its edges.
Implementation

Assume adjacency list representation

Translation array

value next
Calculate In-degrees

In-Degree array; or add a field to array A

<table>
<thead>
<tr>
<th>D</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2 4 5</td>
</tr>
<tr>
<td>1</td>
<td>3 4 5</td>
</tr>
<tr>
<td>1</td>
<td>3 4 5</td>
</tr>
<tr>
<td>2</td>
<td>3 4 5</td>
</tr>
<tr>
<td>2</td>
<td>3 4 5</td>
</tr>
<tr>
<td>0</td>
<td>3 4 5</td>
</tr>
<tr>
<td>6</td>
<td>3 4 5</td>
</tr>
</tbody>
</table>
Calculate In-degrees

for i = 1 to n do D[i] := 0; endfor
for i = 1 to n do
 x := A[i];
 while x ≠ null do
 D[x.value] := D[x.value] + 1;
 x := x.next;
 endwhile
endfor
Maintaining Degree 0 Vertices

Key idea: Initialize and maintain a queue (or stack) of vertices with In-Degree 0

Queue 1 6

Diagram of a graph with vertices and their in-degrees, along with a queue of vertices with in-degree 0.
Topo Sort using a Queue
(breadth-first)

After each vertex is output, when updating In-Degree array, enqueue any vertex whose In-Degree becomes zero.
Topological Sort Algorithm

1. Store each vertex’s In-Degree in an array D
2. Initialize queue with all “in-degree=0” vertices
3. While there are vertices remaining in the queue:
 (a) Dequeue and output a vertex
 (b) Reduce In-Degree of all vertices adjacent to it by 1
 (c) Enqueue any of these vertices whose In-Degree became zero
4. If all vertices are output then success, otherwise there is a cycle.
Some Detail

Main Loop
while notEmpty(Q) do
 x := Dequeue(Q)
 Output(x)
 y := A[x];
 while y ≠ null do
 D[y.value] := D[y.value] - 1;
 if D[y.value] = 0 then Enqueue(Q,y.value);
 y := y.next;
 endwhile
endwhile
Topological Sort Analysis

- Initialize In-Degree array: $O(|V| + |E|)$
- Initialize Queue with In-Degree 0 vertices: $O(|V|)$
- Dequeue and output vertex:
 - $|V|$ vertices, each takes only $O(1)$ to dequeue and output: $O(|V|)$
- Reduce In-Degree of all vertices adjacent to a vertex and Enqueue any In-Degree 0 vertices:
 - $O(|E|)$
- For input graph $G=(V,E)$ run time $= O(|V| + |E|)$
 - Linear time!
Topo Sort using a Stack (depth-first)

After each vertex is output, when updating In-Degree array, push any vertex whose In-Degree becomes zero.
Recall Path cost, Path length

- Path cost: the sum of the costs of each edge
- Path length: the number of edges in the path
 - Path length is the unweighted path cost

![Graph showing cities and their connections with costs](image)

- length(p) = 5
- cost(p) = 11
Shortest Path Problems

- Given a graph \(G = (V, E) \) and a “source” vertex \(s \) in \(V \), find the minimum cost paths from \(s \) to every vertex in \(V \)
- Many variations:
 - unweighted vs. weighted
 - cyclic vs. acyclic
 - pos. weights only vs. pos. and neg. weights
 - etc
Why study shortest path problems?

- Traveling on a budget: What is the cheapest airline schedule from Seattle to city X?
- Optimizing routing of packets on the internet:
 - Vertices are routers and edges are network links with different delays. What is the routing path with smallest total delay?
- Shipping: Find which highways and roads to take to minimize total delay due to traffic
- etc.
Unweighted Shortest Path

Problem: Given a “source” vertex s in an unweighted directed graph $G = (V, E)$, find the shortest path from s to all vertices in G.

Only interested in path lengths
Breadth-First Search Solution

- Basic Idea: Starting at node s, find vertices that can be reached using 0, 1, 2, 3, ..., N-1 edges (works even for cyclic graphs!)
Breadth-First Search Alg.

- Uses a queue to track vertices that are “nearby”
- source vertex is s

\[
\text{Distance}[s] := 0
\]
\[
\text{Enqueue}(Q, s); \text{Mark}(s) // \text{After a vertex is marked once}
\]
\[
// \text{it won’t be enqueued again}
\]

while queue is not empty do

\[
X := \text{Dequeue}(Q);
\]

for each vertex Y adjacent to X do

\[
\text{if } Y \text{ is unmarked then}
\]

\[
\text{Distance}[Y] := \text{Distance}[X] + 1;
\]

\[
\text{Previous}[Y] := X; // \text{if we want to record paths}
\]

\[
\text{Enqueue}(Q, Y); \text{Mark}(Y);
\]

- Running time $= O(|V| + |E|)$
Example: Shortest Path length

Queue $Q = C$
Example (ct’d)

Queue $Q = A \ D \ E$

Indicates the vertex is marked

Previous pointer
Example (ct’d)

\[Q = D \ E \ B \]
Example (ct’d)

\[
Q = B \ G
\]
Example (ct’d)

\[Q = F \]
Example (ct’d)

\[Q = H \]
What if edges have weights?

- Breadth First Search does not work anymore
 - minimum \textit{cost} path may have more edges than minimum \textit{length} path

Shortest path (length) from C to A:
C\rightarrowA (cost = 9)

Minimum Cost Path = C\rightarrowE\rightarrowD\rightarrowA (cost = 8)
Dijkstra’s Algorithm for Weighted Shortest Path

• Classic algorithm for solving shortest path in weighted graphs (without negative weights)
• A greedy algorithm (irrevocably makes decisions without considering future consequences)
• Each vertex has a cost for path from initial vertex
Basic Idea of Dijkstra’s Algorithm

- Find the vertex with smallest cost that has not been “marked” yet.
- Mark it and compute the cost of its neighbors.
- Do this until all vertices are marked.
- Note that each step of the algorithm we are marking one vertex and we won’t change our decision: hence the term “greedy” algorithm.