Graph Terminology

CSE 373
Data Structures
Lecture 17
Reading

• Reading
 › Section 9.1
What are graphs?

- Yes, this is a graph….

- But we are interested in a different kind of “graph”
Graphs

• Graphs are composed of
 › Nodes (vertices)
 › Edges (arcs)
Varieties

• Nodes
 › Labeled or unlabeled

• Edges
 › Directed or undirected
 › Labeled or unlabeled
Motivation for Graphs

- Consider the data structures we have looked at so far…
- **Linked list**: nodes with 1 incoming edge + 1 outgoing edge
- **Binary trees/heaps**: nodes with 1 incoming edge + 2 outgoing edges
- **Binomial trees/B-trees**: nodes with 1 incoming edge + multiple outgoing edges
- **Up-trees**: nodes with multiple incoming edges + 1 outgoing edge
Motivation for Graphs

- How can you generalize these data structures?
- Consider data structures for representing the following problems…
CSE Course Prerequisites at UW

Nodes = courses
Directed edge = prerequisite
Representing a Maze

Nodes = rooms
Edge = door or passage
Representing Electrical Circuits

Nodes = battery, switch, resistor, etc.
Edges = connections
Program statements

Naive:

\[x_1 = q + y \times z \]
\[x_2 = y \times z - q \]

\[y \times z \text{ calculated twice} \]

common subexpression eliminated:

Nodes = symbols/operators
Edges = relationships
Which statements must execute before S_6?
S_1, S_2, S_3, S_4

Nodes = statements
Edges = precedence requirements
Information Transmission in a Computer Network

Nodes = computers
Edges = transmission rates
Traffic Flow on Highways

Nodes = cities
Edges = # vehicles on connecting highway
Graph Definition

• A graph is simply a collection of nodes plus edges
 › Linked lists, trees, and heaps are all special cases of graphs
• The nodes are known as vertices (node = “vertex”)
• Formal Definition: A graph G is a pair (V, E) where
 › V is a set of vertices or nodes
 › E is a set of edges that connect vertices
Graph Example

- Here is a directed graph $G = (V, E)$
 - Each edge is a pair (v_1, v_2), where v_1, v_2 are vertices in V
 - $V = \{A, B, C, D, E, F\}$
 - $E = \{(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)\}$
Directed vs Undirected Graphs

- If the order of edge pairs \((v_1, v_2)\) matters, the graph is directed (also called a digraph): \((v_1, v_2) \neq (v_2, v_1)\)

- If the order of edge pairs \((v_1, v_2)\) does not matter, the graph is called an undirected graph: in this case, \((v_1, v_2) = (v_2, v_1)\)
Undirected Terminology

- Two vertices u and v are adjacent in an undirected graph G if \{u,v\} is an edge in G
 - edge e = \{u,v\} is incident with vertex u and vertex v
- The degree of a vertex in an undirected graph is the number of edges incident with it
 - a self-loop counts twice (both ends count)
 - denoted with \text{deg}(v)
Undirected Terminology

(A,B) is incident to A and to B

B is adjacent to C and C is adjacent to B

Self-loop

Degree = 3

Degree = 0
Directed Terminology

- Vertex u is adjacent to vertex v in a directed graph G if (u,v) is an edge in G
 - vertex u is the initial vertex of (u,v)
- Vertex v is adjacent from vertex u
 - vertex v is the terminal (or end) vertex of (u,v)
- Degree
 - in-degree is the number of edges with the vertex as the terminal vertex
 - out-degree is the number of edges with the vertex as the initial vertex
Directed Terminology

B adjacent to C and C adjacent from B

In-degree = 2
Out-degree = 1
Handshaking Theorem

Let $G=(V,E)$ be an undirected graph with $|E|=e$ edges.

Then $2e = \sum_{v \in V} \deg(v)$

Every edge contributes +1 to the degree of each of the two vertices it is incident with:
- number of edges is exactly half the sum of $\deg(v)$
- the sum of the $\deg(v)$ values must be even
Graph Representations

- Space and time are analyzed in terms of:
 - Number of vertices = $|V|$ and
 - Number of edges = $|E|$
- There are at least two ways of representing graphs:
 - The *adjacency matrix* representation
 - The *adjacency list* representation
Adjacency Matrix

\[M(v, w) = \begin{cases}
1 & \text{if } (v, w) \text{ is in } E \\
0 & \text{otherwise}
\end{cases} \]

\[
\begin{pmatrix}
A & B & C & D & E & F \\
A & 0 & 1 & 0 & 1 & 0 & 0 \\
B & 1 & 0 & 1 & 0 & 0 & 0 \\
C & 0 & 1 & 0 & 1 & 1 & 0 \\
D & 1 & 0 & 1 & 0 & 1 & 0 \\
E & 0 & 0 & 1 & 1 & 0 & 0 \\
F & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

Space = \(|V|^2\)
Adjacency Matrix for a Digraph

- **Diagram**: Nodes A, B, C, D, E, F connected as shown.
- **Matrix**:

 $\begin{pmatrix}
 A & B & C & D & E & F \\
 A & 0 & 1 & 0 & 1 & 0 & 0 \\
 B & 0 & 0 & 1 & 0 & 0 & 0 \\
 C & 0 & 0 & 0 & 1 & 1 & 0 \\
 D & 0 & 0 & 0 & 0 & 1 & 0 \\
 E & 0 & 0 & 0 & 0 & 0 & 0 \\
 F & 0 & 0 & 0 & 0 & 0 & 0 \\
 \end{pmatrix}$

- **Equation**:

 \[M(v, w) = \begin{cases}
 1 & \text{if } (v, w) \text{ is in } E \\
 0 & \text{otherwise}
 \end{cases} \]

- **Space**:

 \[\text{Space} = |V|^2 \]
Adjacency List

For each v in V, $L(v) =$ list of w such that (v, w) is in E

\[
\text{Space} = a|V| + 2b|E|
\]
Adjacency List for a Digraph

For each v in V, $L(v) =$ list of w such that (v, w) is in E

Space = $a |V| + b |E|$