Sorting (Part III)

CSE 373
Data Structures
Lecture 15
Reading

• Reading
 › Sections 7.8-7.9 and radix sort in Section 3.2.6
How fast can we sort?

• Heapsort, Mergesort, and Quicksort all run in $O(N \log N)$ best case running time
• Can we do any better?
• No, if sorting is comparison-based.
Sorting Model

• Recall the basic assumption: we can only compare two elements at a time
 › we can only reduce the possible solution space by half each time we make a comparison

• Suppose you are given N elements
 › Assume no duplicates

• How many possible orderings can you get?
 › Example: a, b, c (N = 3)
Permutations

• How many possible orderings can you get?
 › Example: a, b, c (N = 3)
 › (a b c), (a c b), (b a c), (b c a), (c a b), (c b a)
 › 6 orderings = 3·2·1 = 3! (i.e., “3 factorial”)
 › All the possible permutations of a set of 3 elements

• For N elements
 › N choices for the first position, (N-1) choices for the second position, …, (2) choices, 1 choice
 › N(N-1)(N-2)\ldots(2)(1)= N! possible orderings
Decision Tree

The leaves contain all the possible orderings of a, b, c
Decision Trees

• A Decision Tree is a Binary Tree such that:
 › Each node = a set of orderings
 • i.e., the remaining solution space
 › Each edge = 1 comparison
 › Each leaf = 1 unique ordering
 › How many leaves for N distinct elements?
 • N!, i.e., a leaf for each possible ordering

• Only 1 leaf has the ordering that is the desired correctly sorted arrangement
Decision Trees and Sorting

• Every comparison-based sorting algorithm corresponds to a decision tree
 › Finds correct leaf by choosing edges to follow
 • i.e., by making comparisons
 › Each decision reduces the possible solution space by one half

• Run time is ≥ maximum no. of comparisons
 › maximum number of comparisons is the length of the longest path in the decision tree, i.e. the height of the tree
Decision Tree Example

3! possible orders

![Decision Tree Diagram]

- a < b < c, b < c < a, c < a < b, a < c < b, b < a < c, c < b < a
- a < b < c
- a < c < b
- b < c < a
- b < a < c
- c < b < a
- a < b < a
- b < c < c
- c < b < a
- a < c < b
- b < c < a
- b < a < c
- a < b < a
- b < c < c
- c < b < a
- a < c < b
How many leaves on a tree?

• Suppose you have a binary tree of height d. How many leaves can the tree have?
 › $d = 1 \rightarrow$ at most 2 leaves,
 › $d = 2 \rightarrow$ at most 4 leaves, etc.
Lower bound on Height

- A binary tree of height d has at most 2^d leaves
 - Depth $d = 1 \rightarrow 2$ leaves, $d = 2 \rightarrow 4$ leaves, etc.
 - Can prove by induction
- Number of leaves, $L \leq 2^d$
- Height $d \geq \log_2 L$
- The decision tree has $N!$ leaves
- So the decision tree has height $d \geq \log_2(N!)$
log(\(N!\)) is \(\Omega(\sqrt{\pi}n(n/e)^n)\)

Sterling's formula

\[
\log(N!) = \log(N \cdot (N - 1) \cdot (N - 2) \Lambda (2) \cdot (1)) \\
= \log N + \log(N - 1) + \log(N - 2) + \Lambda + \log 2 + \log 1 \\
\geq \log N + \log(N - 1) + \log(N - 2) + \Lambda + \log \frac{N}{2} \\
\geq \frac{N}{2} \log \frac{N}{2} \\
\geq \frac{N}{2} (\log N - \log 2) = \frac{N}{2} \log N - \frac{N}{2} \\
= \Omega(N \log N)
\]
\[\Omega(N \log N) \]

- Run time of any comparison-based sorting algorithm is \(\Omega(N \log N) \)
- Can we do better if we don’t use comparisons?
Radix Sort: Sorting integers

• Historically goes back to the 1890 census.
• Radix sort = multi-pass bucket sort of integers in the range 0 to $B^p - 1$
• Bucket-sort from least significant to most significant “digit” (base B)
• Requires $P(B+N)$ operations where P is the number of passes (the number of base B digits in the largest possible input number).
• If P and B are constants then $O(N)$ time to sort!
Radix Sort Example

Input data

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>478</td>
<td>537</td>
<td>9</td>
<td>721</td>
<td>3</td>
<td>38</td>
<td>123</td>
</tr>
<tr>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bucket sort by 1’s digit

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>721</td>
<td>3</td>
<td>123</td>
<td>537</td>
<td>67</td>
<td>478</td>
<td>38</td>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This example uses B=10 and base 10 digits for simplicity of demonstration. Larger bucket counts should be used in an actual implementation.

After 1st pass

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>721</td>
<td>3</td>
<td>123</td>
<td>537</td>
<td>67</td>
<td>478</td>
</tr>
<tr>
<td>38</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Radix Sort Example

<table>
<thead>
<tr>
<th>After 1st pass</th>
<th>Bucket sort by 10's digit</th>
<th>After 2nd pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>721</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>123</td>
<td></td>
<td>721</td>
</tr>
<tr>
<td>537</td>
<td></td>
<td>123</td>
</tr>
<tr>
<td>67</td>
<td></td>
<td>537</td>
</tr>
<tr>
<td>478</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>478</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>09</td>
<td>721</td>
<td>123</td>
<td>537</td>
<td>38</td>
<td>67</td>
<td>478</td>
<td></td>
<td></td>
</tr>
<tr>
<td>721</td>
<td>123</td>
<td>537</td>
<td>38</td>
<td>67</td>
<td>478</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Radix Sort Example

After 2nd pass
- 3
- 9
- 721
- 123
- 537
- 38
- 67
- 478

After 3rd pass
- 3
- 9
- 38
- 67
- 123
- 478
- 537
- 721

Bucket sort by 100’s digit

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>123</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>478</td>
<td>537</td>
<td></td>
</tr>
<tr>
<td>038</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>721</td>
</tr>
<tr>
<td>067</td>
<td></td>
</tr>
</tbody>
</table>

Invariant: after k passes the low order k digits are sorted.
Implementation Options

- **List**
 - List of data, bucket array of lists.
 - Concatenate lists for each pass.
- **Array / List**
 - Array of data, bucket array of lists.
- **Array / Array**
 - Array of data, array for all buckets.
 - Requires counting.
Array / Array

<table>
<thead>
<tr>
<th>Data Array</th>
<th>Count Array</th>
<th>Address Array</th>
<th>Target Array</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>478</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>537</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>721</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>38</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>123</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>67</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>

Bucket \(i \) ranges from \(\text{add}[i] \) to \(\text{add}[i+1]-1 \)

\[
\begin{align*}
\text{add}[0] & := 0 \\
\text{add}[i] & := \text{add}[i-1] + \text{count}[i-1], \ i > 0
\end{align*}
\]
Array / Array

- Pass 1 (over A)
 › Calculate counts and addresses for 1st “digit”
- Pass 2 (over T)
 › Move data from A to T
 › Calculate counts and addresses for 2nd “digit”
- Pass 3 (over A)
 › Move data from T to A
 › Calculate counts and addresses for 3rd “digit”
- …
- In the end an additional copy may be needed.
Choosing Parameters for Radix Sort

- N number of integers – given
- m bit numbers - given
- B number of buckets
 - \(B = 2^r \): power of 2 so that calculations can be done by shifting.
 - N/B not too small, otherwise too many empty buckets.
 - \(P = m/r \) should be small.

- Example – 1 million 64 bit numbers. Choose \(B = 2^{16} = 65,536 \). 1 Million / B \(\approx 15 \) numbers per bucket. \(P = 64/16 = 4 \) passes.
Properties of Radix Sort

• Not in-place
 › needs lots of auxiliary storage.

• Stable
 › equal keys always end up in same bucket in the same order.

• Fast
 › $B = 2^r$ buckets on m bit numbers

 \[O\left(\frac{m}{r}(n+2^r)\right) \] time
Internal versus External Sorting

• So far assumed that accessing \(A[i] \) is fast – Array \(A \) is stored in internal memory (RAM)
 › Algorithms so far are good for internal sorting

• What if \(A \) is so large that it doesn’t fit in internal memory?
 › Data on disk or tape
 › Delay in accessing \(A[i] \) – e.g. need to spin disk and move head
Internal versus External Sorting

• Need sorting algorithms that minimize disk access time
 › External sorting – Basic Idea:
 • Load chunk of data into RAM, sort, store this “run” on disk/tape
 • Use the Merge routine from Mergesort to merge runs
 • Repeat until you have only one run (one sorted chunk)
 • Text gives some examples
Summary of Sorting

• Sorting choices:
 › O(N^2) – Bubblesort, Insertion Sort
 › O(N \log N) average case running time:
 • Heapsort: In-place, not stable.
 • Mergesort: O(N) extra space, stable.