Sorting (Part II: Divide and Conquer)

CSE 373
Data Structures
Lecture 14
Readings

• Reading
 › Section 7.6, Mergesort
 › Section 7.7, Quicksort
“Divide and Conquer”

• Very important strategy in computer science:
 › Divide problem into smaller parts
 › Independently solve the parts
 › Combine these solutions to get overall solution

• **Idea 1**: Divide array into two halves, *recursively* sort left and right halves, then *merge* two halves \(\rightarrow \) Mergesort

• **Idea 2**: Partition array into items that are “small” and items that are “large”, then recursively sort the two sets \(\rightarrow \) Quicksort
Mergesort

- Divide it in two at the midpoint
- Conquer each side in turn (by recursively sorting)
- Merge two halves together
Mergesort Example

Divide and Conquer Sorting - Lecture 14
Auxiliary Array

- The merging requires an auxiliary array.

\[
\begin{array}{cccccccc}
2 & 4 & 8 & 9 & 1 & 3 & 5 & 6 \\
\end{array}
\]
Auxiliary Array

- The merging requires an auxiliary array.

```
2  4  8  9  1  3  5  6
```

```
1
```

Auxiliary array
Auxiliary Array

- The merging requires an auxiliary array.

```
2 4 8 9 1 3 5 6
```

```
1 2 3 4 5
```

Auxiliary array
Merging

![Diagram of merging with index points i and j, and different scenarios for copying and merging]

- Normal scenario: The target is copied and merged as indicated.
- Left completed first scenario: The target is copied and merged with the left side first.

(i) i
(j) j

(target)
Merging

Right completed first

target

first

second

i

j
Merging

```
Merge(A[], T[] : integer array, left, right : integer) : {
    mid, i, j, k, l, target : integer;
    mid := (right + left)/2;
    i := left; j := mid + 1; target := left;
    while i ≤ mid and j ≤ right do
        else T[target] := A[j]; j := j + 1;
        target := target + 1;
    if i > mid then //left completed//
        for k := left to target-1 do A[k] := T[k];
    if j > right then //right completed//
        k := mid; l := right;
        while k ≥ i do A[l] := A[k]; k := k-1; l := l-1;
        for k := left to target-1 do A[k] := T[k];
    }
```
Recursive Mergesort

Mergesort(A[], T[] : integer array, left, right : integer) : {
 if left < right then
 mid := (left + right)/2;
 Mergesort(A,T,left,mid);
 Mergesort(A,T,mid+1,right);
 Merge(A,T,left,right);
 }

MainMergesort(A[1..n]: integer array, n : integer) : {
 T[1..n]: integer array;
 Mergesort[A,T,1,n];
}
Iterative Mergesort

Merge by 1
Merge by 2
Merge by 4
Merge by 8
Iterative Mergesort

Merge by 1
Merge by 2
Merge by 4
Merge by 8
Merge by 16

Need of a last copy
Iterative Mergesort

IterativeMergesort(A[1..n]: integer array, n : integer) : {
//precondition: n is a power of 2//
 i, m, parity : integer;
 T[1..n]: integer array;
 m := 2; parity := 0;
 while m <= n do
 for i = 1 to n - m + 1 by m do
 if parity = 0 then Merge(A,T,i,i+m-1);
 else Merge(T,A,i,i+m-1);
 parity := 1 - parity;
 m := 2*m;
 if parity = 1 then
 for i = 1 to n do A[i] := T[i];
}
Mergesort Analysis

- Let $T(N)$ be the running time for an array of N elements
- Mergesort divides array in half and calls itself on the two halves. After returning, it merges both halves using a temporary array
- Each recursive call takes $T(N/2)$ and merging takes $O(N)$
Mergesort Recurrence Relation

• The recurrence relation for T(N) is:
 › T(1) ≤ a
 • base case: 1 element array → constant time
 › T(N) ≤ 2T(N/2) + bN
 • Sorting N elements takes
 – the time to sort the left half
 – plus the time to sort the right half
 – plus an O(N) time to merge the two halves

• T(N) = O(n log n) (see Lecture 5 Slide17)
Properties of Mergesort

• Not in-place
 › Requires an auxiliary array (O(n) extra space)

• Stable
 › Make sure that left is sent to target on equal values.

• Iterative Mergesort reduces copying.
Quicksort

- Quicksort uses a divide and conquer strategy, but does not require the O(N) extra space that MergeSort does
 - Partition array into left and right sub-arrays
 - Choose an element of the array, called pivot
 - the elements in left sub-array are all less than pivot
 - elements in right sub-array are all greater than pivot
 - Recursively sort left and right sub-arrays
 - Concatenate left and right sub-arrays in O(1) time
“Four easy steps”

• To sort an array S
 1. If the number of elements in S is 0 or 1, then return. The array is sorted.
 2. Pick an element v in S. This is the *pivot* value.
 3. Partition S-$\{v\}$ into two disjoint subsets, $S_1 = \{\text{all values } x \leq v\}$, and $S_2 = \{\text{all values } x \geq v\}$.
 4. Return QuickSort(S_1), v, QuickSort(S_2)
The steps of QuickSort

1. Select pivot value
2. Partition S
3. QuickSort(S₁) and QuickSort(S₂)
4. Voila! S is sorted

[Weiss]
Details, details

- Implementing the actual partitioning
- Picking the pivot
 - want a value that will cause $|S_1|$ and $|S_2|$ to be non-zero, and close to equal in size if possible
- Dealing with cases where the element equals the pivot
Quicksort Partitioning

• Need to partition the array into left and right sub-arrays
 › the elements in left sub-array are ≤ pivot
 › elements in right sub-array are ≥ pivot

• How do the elements get to the correct partition?
 › Choose an element from the array as the pivot
 › Make one pass through the rest of the array and swap as needed to put elements in partitions
Partitioning: Choosing the pivot

• One implementation (there are others)
 › median3 finds pivot and sorts left, center, right
 • Median3 takes the median of leftmost, middle, and rightmost elements
 • An alternative is to choose the pivot randomly (need a random number generator; “expensive”)
 • Another alternative is to choose the first element (but can be very bad. Why?)
 › Swap pivot with next to last element
Partitioning in-place

› Set pointers i and j to start and end of array
› Increment i until you hit element A[i] > pivot
› Decrement j until you hit elmt A[j] < pivot
› Swap A[i] and A[j]
› Repeat until i and j cross
› Swap pivot (at A[N-2]) with A[i]
Example

Choose the pivot as the median of three

Median of 0, 6, 8 is 6. Pivot is 6

Place the largest at the right
and the smallest at the left.
Swap pivot with next to last element.
Example

Move i to the right up to $A[i]$ larger than pivot. Move j to the left up to $A[j]$ smaller than pivot. Swap
Example

Cross-over $i > j$

$S_1 < \text{pivot}$ \hspace{2cm} \text{pivot} \hspace{2cm} S_2 > \text{pivot}$
Recursive Quicksort

Quicksort(A[]): integer array, left, right : integer): {
 pivotindex : integer;
 if left + CUTOFF ≤ right then
 pivot := median3(A,left,right);
 pivotindex := Partition(A,left,right-1,pivot);
 Quicksort(A, left, pivotindex - 1);
 Quicksort(A, left, pivotindex + 1, right);
 else
 Insertionsort(A,left,right);
}

Don’t use quicksort for small arrays.
CUTOFF = 10 is reasonable.
Quicksort Best Case Performance

- Algorithm always chooses best pivot and splits sub-arrays in half at each recursion
 - $T(0) = T(1) = O(1)$
 - constant time if 0 or 1 element
 - For $N > 1$, 2 recursive calls plus linear time for partitioning
 - $T(N) = 2T(N/2) + O(N)$
 - Same recurrence relation as Mergesort
 - $T(N) = O(N \log N)$
Quicksort Worst Case Performance

• Algorithm always chooses the worst pivot – one sub-array is empty at each recursion
 › $T(N) \leq a$ for $N \leq C$
 › $T(N) \leq T(N-1) + bN$
 › $\leq T(N-2) + b(N-1) + bN$
 › $\leq T(C) + b(C+1) + \ldots + bN$
 › $\leq a + b(C + (C+1) + (C+2) + \ldots + N)$
 › $T(N) = O(N^2)$

• Fortunately, average case performance is $O(N \log N)$ (see text for proof)
Properties of Quicksort

- Not stable because of long distance swapping.
- No iterative version (without using a stack).
- Pure quicksort not good for small arrays.
- “In-place”, but uses auxiliary storage because of recursive call (O(logn) space).
- O(n log n) average case performance, but O(n²) worst case performance.
Folklore

• “Quicksort is the best in-memory sorting algorithm.”

• Truth
 › Quicksort uses very few comparisons on average.
 › Quicksort does have good performance in the memory hierarchy.
 • Small footprint
 • Good locality