Binary Heaps

CSE 373
Data Structures
Lecture 11
Readings

• Reading
 › Sections 6.1-6.4
Revisiting FindMin

• Application: Find the smallest (or highest priority) item quickly
 › Operating system needs to schedule jobs according to priority instead of FIFO
 › Event simulation (bank customers arriving and departing, ordered according to when the event happened)
 › Find student with highest grade, employee with highest salary etc.
Priority Queue ADT

• Priority Queue can efficiently do:
 › FindMin (and DeleteMin)
 › Insert

• What if we use…
 › Lists: If sorted, what is the run time for Insert and FindMin? Unsorted?
 › Binary Search Trees: What is the run time for Insert and FindMin?
 › Hash Tables: What is the run time for Insert and FindMin?
Less flexibility \rightarrow More speed

- Lists
 - If sorted: FindMin is $O(1)$ but Insert is $O(N)$
 - If not sorted: Insert is $O(1)$ but FindMin is $O(N)$
- Balanced Binary Search Trees (BSTs)
 - Insert is $O(\log N)$ and FindMin is $O(\log N)$
- Hash Tables:
 - Insert $O(1)$ but no hope for FindMin
- BSTs look good but…
 - BSTs are efficient for all Finds, not just FindMin
 - We only need FindMin
Better than a speeding BST

• We can do better than Balanced Binary Search Trees?
 › Very limited requirements: Insert, FindMin, DeleteMin. The goals are:
 › FindMin is $O(1)$
 › Insert is $O(\log N)$
 › DeleteMin is $O(\log N)$
Binary Heaps

• A binary heap is a binary tree (NOT a BST) that is:
 › Complete: the tree is completely filled except possibly the bottom level, which is filled from left to right
 › Satisfies the heap order property
 • every node is less than or equal to its children
 • or every node is greater than or equal to its children
• The root node is always the smallest node
 › or the largest, depending on the heap order
Heap order property

- A heap provides limited ordering information
- Each *path* is sorted, but the subtrees are not sorted relative to each other
 - A binary heap is NOT a binary search tree

These are all valid binary heaps (minimum)
Binary Heap vs Binary Search Tree

Binary Heap

5

10

94

97

24

Parent is less than both left and right children

Binary Search Tree

94

10

97

5

24

Parent is greater than left child, less than right child
Structure property

• A binary heap is a complete tree
 › All nodes are in use except for possibly the right end of the bottom row
Examples

- Complete tree, heap order is "max"
- Complete tree, heap order is "min"
- Not complete
- Complete tree, but min heap order is broken
Array Implementation of Heaps (Implicit Pointers)

- Root node = A[1]
- Keep track of current size N (number of nodes)

\[
\begin{array}{cccccccc}
\text{value} & 2 & 4 & 6 & 7 & 5 & & \\
\text{index} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\end{array}
\]

\[N = 5\]
FindMin and DeleteMin

• FindMin: Easy!
 › Return root value A[1]
 › Run time = ?

• DeleteMin:
 › Delete (and return) value at root node
DeleteMin

- Delete (and return) value at root node
Maintain the Structure Property

- We now have a “Hole” at the root
 - Need to fill the hole with another value
- When we get done, the tree will have one less node and must still be complete
Maintain the Heap Property

- The last value has lost its node
 - we need to find a new place for it
- We can do a simple insertion sort operation to find the correct place for it in the tree
DeleteMin: Percolate Down

- Copy smaller child up and go down one level
- Done if both children are \geq item or reached a leaf node
- What is the run time?
Percolate Down

PercDown(i:integer, x :integer): {
// N is the number of entries in heap/
j : integer;
Case{
 2i > N : A[i] := x; //at bottom//
 2i = N : if A[2i] < x then
 else A[i] := x;
 else j := 2i+1;
 if A[j] < x then
 A[i] := A[j]; PercDown(j,x);
 else A[i] := x;

}}
DeleteMin: Run Time Analysis

- Run time is $O(\text{depth of heap})$
- A heap is a complete binary tree
- Depth of a complete binary tree of N nodes?
 - $\text{depth} = \lceil \log_2(N) \rceil$
- Run time of DeleteMin is $O(\log N)$
Insert

- Add a value to the tree
- Structure and heap order properties must still be correct when we are done
Maintain the Structure Property

- The only valid place for a new node in a complete tree is at the end of the array.
- We need to decide on the correct value for the new node, and adjust the heap accordingly.
Maintain the Heap Property

• The new value goes where?
• We can do a simple insertion sort operation to find the correct place for it in the tree
Insert: Percolate Up

- Start at last node and keep comparing with parent $A[i/2]$
- If parent larger, copy parent down and go up one level
- Done if parent \leq item or reached top node $A[1]$
- Run time?

```
2/5/03  Binary Heaps - Lecture 11  23
```
Insert: Done

- Run time?
PercUp

• Define PercUp which percolates new entry to correct spot.
• Note: the parent of i is i/2

PercUp(i : integer, x : integer): {
 ????
}
Sentinel Values

• Every iteration of Insert needs to test:
 › if it has reached the top node A[1]
 › if parent ≤ item
• Can avoid first test if A[0] contains a very large negative value
 › sentinel -∞ < item, for all items
• Second test alone always stops at top
Binary Heap Analysis

- Space needed for heap of N nodes: $O(\text{MaxN})$
 - An array of size MaxN, plus a variable to store the size N, plus an array slot to hold the sentinel

- Time
 - FindMin: $O(1)$
 - DeleteMin and Insert: $O(\log N)$
 - BuildHeap from N inputs: $O(N)$
Build Heap

BuildHeap {
 for i = N/2 to 1 by -1 PercDown(i,A[i])
}

N=11

Binary Heaps - Lecture 11
2/5/03
Build Heap
Build Heap

Diagram:

Before:
- 11
 - 2
 - 5
 - 9
 - 3
 - 7
 - 6
 - 4
 - 8
 - 10
 - 12

After:
- 2
 - 3
 - 5
 - 9
 - 4
 - 10
 - 8
 - 12
 - 11
Analysis of Build Heap

- Assume \(N = 2^K - 1 \)
 - Level 1: \(k - 1 \) steps for 1 item
 - Level 2: \(k - 2 \) steps of 2 items
 - Level 3: \(k - 3 \) steps for 4 items
 - Level \(i \): \(k - i \) steps for \(2^{i-1} \) items

\[
\text{Total Steps} = \sum_{i=1}^{k-1} (k - i)2^{i-1} = 2^k - k - 1
\]

\[= O(N)\]
Other Heap Operations

• Find(X, H): Find the element X in heap H of N elements
 › What is the running time? O(N)
• FindMax(H): Find the maximum element in H
• Where FindMin is O(1)
 › What is the running time? O(N)
• We sacrificed performance of these operations in order to get O(1) performance for FindMin
Other Heap Operations

- DecreaseKey(P,\Delta,H): Decrease the key value of node at position P by a positive amount \Delta, e.g., to increase priority
 - First, subtract \Delta from current value at P
 - Heap order property may be violated
 - so percolate up to fix
 - Running Time: O(log N)
Other Heap Operations

- **IncreaseKey(P, Δ, H):** Increase the key value of node at position P by a positive amount Δ, e.g., to decrease priority
 - First, add Δ to current value at P
 - Heap order property may be violated
 - so percolate down to fix
 - Running Time: O(log N)
Other Heap Operations

- **Delete(P,H)**: E.g. Delete a job waiting in queue that has been preemptively terminated by user
 - Use **DecreaseKey(P,∞,H)** followed by **DeleteMin**
 - **Running Time**: **O(log N)**
Other Heap Operations

- **Merge(H1,H2):** Merge two heaps H1 and H2 of size $O(N)$. H1 and H2 are stored in two arrays.
 - Can do $O(N)$ Insert operations: $O(N \log N)$ time
 - Better: Copy H2 at the end of H1 and use BuildHeap. Running Time: $O(N)$
PercUp Solution

PercUp(i : integer, x : integer): {
 if i = 1 then A[1] := x
 else if A[i/2] < x then
 A[i] := x;
 else
 A[i] := A[i/2];
 Percup(i/2,x);
}