Reading

• Reading
 › Sections 7.1-7.3 and 7.5
 › Section 7.6, Mergesort
 › Section 7.7, Quicksort
Sorting

• **Input**
 ‣ an array A of data records (Note: we have seen how to sort when elements are in linked lists: Mergesort)
 ‣ a key value in each data record
 ‣ a comparison function which imposes a consistent ordering on the keys (e.g., integers)

• **Output**
 ‣ reorganize the elements of A such that
 • For any i and j, if i < j then A[i] ≤ A[j]
Space

• How much space does the sorting algorithm require in order to sort the collection of items?
 › Is copying needed? $O(n)$ additional space
 › In-place sorting – no copying – $O(1)$ additional space
 › Somewhere in between for “temporary”, e.g. $O(\log n)$ space
 › External memory sorting – data so large that does not fit in memory
Time

• How fast is the algorithm?
 › The definition of a sorted array A says that for any $i < j$, $A[i] < A[j]$
 › This means that you need to at least check on each element at the very minimum, I.e., at least $O(N)$
 › And you could end up checking each element against every other element, which is $O(N^2)$
 › The big question is: How close to $O(N)$ can you get?
Stability

- Stability: Does it rearrange the order of input data records which have the same key value (duplicates)?
 - E.g. Phone book sorted by name. Now sort by county – is the list still sorted by name within each county?
 - Extremely important property for databases
 - A stable sorting algorithm is one which does not rearrange the order of duplicate keys
Faster is better!
Bubble Sort

- “Bubble” elements to to their proper place in the array by comparing elements i and i+1, and swapping if A[i] > A[i+1]
 - Bubble every element towards its correct position
 - last position has the largest element
 - then bubble every element except the last one towards its correct position
 - then repeat until done or until the end of the quarter, whichever comes first ...
Bubblesort

bubble(A[1..n]: integer array, n : integer): {
 i, j : integer;
 for i = 1 to n-1 do
 for j = 2 to n-i+1 do
 }

SWAP(a,b) : {
 t :integer;
 t:=a; a:=b; b:=t;
}
Put the largest element in its place

larger value?

1 2 3 8 8

1 2 3 7 8 9 10 12 23 18 15 16 17 14

swap

1 2 3 7 8 9 10 12 23 18 15 16 17 14

9 10 12 23 23

1 2 3 7 8 9 10 12 23 18 15 16 17 14

swap

1 2 3 7 8 9 10 12 18 23 15 16 17 14

1 2 3 7 8 9 10 12 18 15 23 16 17 14

swap

1 2 3 7 8 9 10 12 18 15 16 23 17 14

1 2 3 7 8 9 10 12 18 15 16 17 23 14

swap

1 2 3 7 8 9 10 12 18 15 16 17 14

swap

1 2 3 7 8 9 10 12 18 15 16 17 14

swap

1 2 3 7 8 9 10 12 18 15 16 17 14

swap

1 2 3 7 8 9 10 12 18 15 16 17 14

swap

1 2 3 7 8 9 10 12 18 15 16 17 14

swap

1 2 3 7 8 9 10 12 18 15 16 17 14

23
Put 2^{nd} largest element in its place

Two elements done, only $n-2$ more to go ...
Bubble Sort: Just Say No

- “Bubble” elements to their proper place in the array by comparing elements i and $i+1$, and swapping if $A[i] > A[i+1]$
- We bubbleize for $i=1$ to n (i.e., n times)
- Each bubbleization is a loop that makes $n-i$ comparisons
- This is $O(n^2)$
Insertion Sort

- What if first k elements of array are already sorted?
 - $4, 7, 12, 5, 19, 16$
- We can shift the tail of the sorted elements list down and then *insert* next element into proper position and we get $k+1$ sorted elements
 - $4, 5, 7, 12, 19, 16$
Insertion Sort

InsertionSort(A[1..N]: integer array, N: integer) {
 i, j, temp: integer ;
 for i = 2 to N {
 temp := A[i];
 j := i-1;
 while j > 1 and A[j-1] > temp {
 A[j] = temp;
 }
}

• Is Insertion sort in place?
• Running time = ?
Example
Example
Insertion Sort Characteristics

- In place and Stable
- Running time
 - Worst case is $O(N^2)$
 - reverse order input
 - must copy every element every time
- Good sorting algorithm for almost sorted data
 - Each item is close to where it belongs in sorted order.
Heap Sort

- We use a Max-Heap
- Root node = A[1]
- Keep track of current size N (number of nodes)

\[
\begin{array}{cccccccc}
\text{value} & 7 & 5 & 6 & 2 & 4 & \text{ } & \text{ } & \text{index} \\
\text{index} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
\]

\[N = 5\]
Using Binary Heaps for Sorting

- Build a max-heap
- Do N DeleteMax operations and store each Max element as it comes out of the heap
- Data comes out in largest to smallest order
- Where can we put the elements as they are removed from the heap?
1 Removal = 1 Addition

- Every time we do a DeleteMax, the heap gets smaller by one node, and we have one more node to store
 - Store the data at the end of the heap array
 - Not "in the heap" but it is in the heap array

<table>
<thead>
<tr>
<th>value</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>2</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

N = 4
Repeated DeleteMax

\[\begin{array}{ccccccccc}
5 & 2 & 4 & 6 & 7 & _ & _ & _ & 8 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{array} \]

\[N = 3 \]

\[\begin{array}{ccccccccc}
4 & 2 & 5 & 6 & 7 & _ & _ & _ & 8 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{array} \]

\[N = 2 \]
Heap Sort is In-place

- After all the DeleteMaxs, the heap is gone but the array is full and is in sorted order

<table>
<thead>
<tr>
<th>value</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

N = 0
Heapsort: Analysis

- **Running time**
 - time to build max-heap is $O(N)$
 - time for N DeleteMax operations is $N \cdot O(\log N)$
 - total time is $O(N \log N)$

- Can also show that running time is $\Omega(N \log N)$ for some inputs,
 - so **worst case** is $\Theta(N \log N)$
 - **Average case** running time is also $O(N \log N)$

- Heapsort is in-place but not stable (why?)
“Divide and Conquer”

- Very important strategy in computer science:
 - Divide problem into smaller parts
 - Independently solve the parts
 - Combine these solutions to get overall solution

- **Idea 1**: Divide array into two halves, *recursively* sort left and right halves, then *merge* two halves \rightarrow Mergesort

- **Idea 2**: Partition array into items that are “small” and items that are “large”, then recursively sort the two sets \rightarrow Quicksort
Mergesort

- Divide it in two at the midpoint
- Conquer each side in turn (by recursively sorting)
- Merge two halves together
Mergesort Example

```
8 2 9 4 5 3 1 6
```

Divide

```
8 2
9 4
```

Divide

```
8 2
9 4
```

Divide

```
8 2
9 4
```

1 element

```
8 2
9 4
```

Merge

```
2 8
4 9
```

Merge

```
2 4 8 9
```

Merge

```
1 2 3 4 5 6 8 9
```

Merge
Auxiliary Array

- The merging requires an auxiliary array.

```
  2 4 8 9 1 3 5 6
```

```
    Auxiliary array
```

Auxiliary Array

- The merging requires an auxiliary array.

\[
\begin{array}{cccccc}
2 & 4 & 8 & 9 & 1 & 3 & 5 & 6
\end{array}
\]
Auxiliary Array

- The merging requires an auxiliary array.

```
 2 4 8 9 1 3 5 6
```

```
 1 2 3 4 5  
```

Auxiliary array
Merging

normal

target

Left completed first

target
Merging

Right completed first

target

first

second

i j
Merging Algorithm

Merge(A[], T[] : integer array, left, right : integer) : {
 mid, i, j, k, l, target : integer;
 mid := (right + left)/2;
 i := left; j := mid + 1; target := left;
 while i < mid and j < right do
 else T[target] := A[j]; j := j + 1;
 target := target + 1;
 if i > mid then //left completed//
 for k := left to target-1 do A[k] := T[k];
 if j > right then //right completed//
 k := mid; l := right;
 while k > i do A[l] := A[k]; k := k-1; l := l-1;
 for k := left to target-1 do A[k] := T[k];
}
Recursive Mergesort

Mergesort(A[], T[] : integer array, left, right : integer) : {
 if left < right then
 mid := (left + right)/2;
 Mergesort(A,T,left,mid);
 Mergesort(A,T,mid+1,right);
 Merge(A,T,left,right);
 }

MainMergesort(A[1..n]: integer array, n : integer) : {
 T[1..n]: integer array;
 Mergesort [A,T,1,n];
}
Iterative Mergesort

Merge by 1
Merge by 2
Merge by 4
Merge by 8
Iterative Mergesort

Merge by 1
Merge by 2
Merge by 4
Merge by 8
Merge by 16

Need of a last copy
Iterative Mergesort

IterativeMergesort(A[1..n]: integer array, n : integer) : {
 //precondition: n is a power of 2//
 i, m, parity : integer;
 T[1..n]: integer array;
 m := 2; parity := 0;
 while m ≤ n do
 for i = 1 to n - m + 1 by m do
 if parity = 0 then Merge(A,T,i,i+m-1);
 else Merge(T,A,i,i+m-1);
 parity := 1 - parity;
 m := 2*m;
 if parity = 1 then
 for i = 1 to n do A[i] := T[i];
}

How do you handle non-powers of 2?
How can the final copy be avoided?
Mergesort Analysis

• Let $T(N)$ be the running time for an array of N elements
• Mergesort divides array in half and calls itself on the two halves. After returning, it merges both halves using a temporary array
• Each recursive call takes $T(N/2)$ and merging takes $O(N)$
Mergesort Recurrence Relation

- The recurrence relation for $T(N)$ is:
 - $T(1) \leq a$
 - base case: 1 element array \rightarrow constant time
 - $T(N) \leq 2T(N/2) + bN$
 - Sorting N elements takes
 - the time to sort the left half
 - plus the time to sort the right half
 - plus an $O(N)$ time to merge the two halves

- $T(N) = O(n \log n)$
Properties of Mergesort

- Not in-place
 - Requires an auxiliary array (O(n) extra space)
- Stable
 - Make sure that left is sent to target on equal values.
- Iterative Mergesort reduces copying.
Quicksort

- Quicksort uses a divide and conquer strategy, but does not require the $O(N)$ extra space that MergeSort does
 - Partition array into left and right sub-arrays
 - Choose an element of the array, called **pivot**
 - the elements in left sub-array are all less than pivot
 - elements in right sub-array are all greater than pivot
 - Recursively sort left and right sub-arrays
 - Concatenate left and right sub-arrays in $O(1)$ time
“Four easy steps”

• To sort an array S
 1. If the number of elements in S is 0 or 1, then return. The array is sorted.
 2. Pick an element v in S. This is the pivot value.
 3. Partition S-$\{v\}$ into two disjoint subsets, S_1 = \{all values $x \leq v$\}, and S_2 = \{all values $x \geq v$\}.
 4. Return QuickSort(S_1), v, QuickSort(S_2)
The steps of QuickSort

1. Select pivot value
2. Partition S
3. QuickSort(S₁) and QuickSort(S₂)
4. Voila! S is sorted

[Weiss]
Details, details

- Implementing the actual partitioning
- Picking the pivot
 - want a value that will cause $|S_1|$ and $|S_2|$ to be non-zero, and close to equal in size if possible
- Dealing with cases where the element equals the pivot
Quicksort Partitioning

- Need to partition the array into left and right sub-arrays
 - the elements in left sub-array are ≤ pivot
 - elements in right sub-array are ≥ pivot
- How do the elements get to the correct partition?
 - Choose an element from the array as the pivot
 - Make one pass through the rest of the array and swap as needed to put elements in partitions
Partitioning: Choosing the pivot

- One implementation (there are others)
 - median3 finds pivot and sorts left, center, right
 - Median3 takes the median of leftmost, middle, and rightmost elements
 - An alternative is to choose the pivot randomly (need a random number generator; “expensive”)
 - Another alternative is to choose the first element (but can be very bad. Why?)
 - Swap pivot with next to last element
Partitioning in-place

- Set pointers i and j to start and end of array
- Increment i until you hit element $A[i] > \text{pivot}$
- Decrement j until you hit elmt $A[j] < \text{pivot}$
- Swap $A[i]$ and $A[j]$
- Repeat until i and j cross
- Swap pivot (at $A[N-2]$) with $A[i]$
Choose the pivot as the median of three

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

Median of 0, 6, 8 is 6. Pivot is 6

| 0 | 1 | 4 | 9 | 7 | 3 | 5 | 2 | 6 | 8 |

Place the largest at the right and the smallest at the left. Swap pivot with next to last element.
Example

Move i to the right up to A[i] larger than pivot. Move j to the left up to A[j] smaller than pivot. Swap
Example

Cross-over $i > j$

$S_1 < \text{pivot}$

pivot

$S_2 > \text{pivot}$
Recursive Quicksort

Quicksort(A[],: integer array, left,right : integer): {
pivotindex : integer;
if left + CUTOFF ≤ right then
 pivot := median3(A,left,right);
pivotindex := Partition(A,left,right-1,pivot);
 Quicksort(A, left, pivotindex – 1);
 Quicksort(A, pivotindex + 1, right);
else
 Insertionsort(A,left,right);
}

Don’t use quicksort for small arrays. CUTOFF = 10 is reasonable.
Quicksort Best Case Performance

- Algorithm always chooses best pivot and splits sub-arrays in half at each recursion
 - \(T(0) = T(1) = O(1) \)
 - constant time if 0 or 1 element
 - For \(N > 1 \), 2 recursive calls plus linear time for partitioning
 - \(T(N) = 2T(N/2) + O(N) \)
 - Same recurrence relation as Mergesort
 - \(T(N) = O(N \log N) \)
Quicksort Worst Case Performance

- Algorithm always chooses the worst pivot – one sub-array is empty at each recursion
 - \(T(N) \leq a \) for \(N \leq C \)
 - \(T(N) \leq T(N-1) + bN \)
 - \(\leq T(N-2) + b(N-1) + bN \)
 - \(\leq T(C) + b(C+1) + \ldots + bN \)
 - \(\leq a + b(C + (C+1) + (C+2) + \ldots + N) \)
 - \(T(N) = O(N^2) \)

- Fortunately, *average case performance* is \(O(N \log N) \) (see text for proof)
Properties of Quicksort

- Not stable because of long distance swapping.
- No iterative version (without using a stack).
- Pure quicksort not good for small arrays.
- “In-place”, but uses auxiliary storage because of recursive call (O(logn) space).
- $O(n \log n)$ average case performance, but $O(n^2)$ worst case performance.
Folklore

• “Quicksort is the best in-memory sorting algorithm.”
• Truth
 › Quicksort uses very few comparisons on average.
 › Quicksort does have good performance in the memory hierarchy.
 • Small footprint
 • Good locality