Minimum Spanning Trees

CSE 373
Data Structures
Lecture 18
Recall Spanning Tree

- Given (connected) graph $G(V, E)$, a spanning tree $T(V', E')$:
 - Spans the graph ($V' = V$)
 - Forms a tree (no cycle);
 - E' has $|V| - 1$ edges
Minimum Spanning Tree

- Edges are weighted: find minimum cost spanning tree
- Applications
 - Find cheapest way to wire your house
 - Find minimum cost to send a message on the Internet
Strategy for Minimum Spanning Tree

- For any spanning tree T, inserting an edge e_{new} not in T creates a cycle.
- But
 - Removing any edge e_{old} from the cycle gives back a spanning tree.
 - If e_{new} has a lower cost than e_{old}, we have progressed!
Strategy

• Strategy for construction:
 › Add an edge of minimum cost that does not create a cycle (greedy algorithm)
 › Repeat $|V| - 1$ times
 › Correct since if we could replace an edge with one of lower cost, the algorithm would have picked it up
Two Algorithms

- **Prim**: (build tree incrementally)
 - Pick lower cost edge connected to known (incomplete) spanning tree that does not create a cycle and expand to include it in the tree

- **Kruskal**: (build forest that will finish as a tree)
 - Pick lower cost edge not yet in a tree that does not create a cycle and expand to include it somewhere in the forest
Prim’s algorithm

Starting from empty T, choose a vertex at random and initialize $V = \{1\}$, $E' = \{\}$
Choose the vertex u not in V such that edge weight from u to a vertex in V is minimal (greedy!)

V={1,3} E’ = {(1,3)}
Prim’s algorithm

Repeat until all vertices have been chosen

Choose the vertex \(u \) not in \(V \) such that edge weight from \(v \) to a vertex in \(V \) is minimal (greedy!)

\[
V = \{1, 3, 4\} \quad E' = \{(1, 3), (3, 4)\}
\]

\[
V = \{1, 3, 4, 5\} \quad E' = \{(1, 3), (3, 4), (4, 5)\}
\]

.....

\[
V = \{1, 3, 4, 5, 2, 6\}
\]

\[
E' = \{(1, 3), (3, 4), (4, 5), (5, 2), (2, 6)\}
\]
Prim’s algorithm

Repeat until all vertices have been chosen

$V = \{1, 3, 4, 5, 2, 6\}$

$E' = \{(1, 3), (3, 4), (4, 5), (5, 2), (2, 6)\}$

Final Cost: $1 + 3 + 4 + 1 + 1 = 10$
Prim’s Algorithm Implementation

- Assume adjacency list representation

 Initialize connection cost of each node to “inf” and “unmark” them
 Choose one node, say \(v \) and set \(\text{cost}[v] = 0 \) and \(\text{prev}[v] = 0 \)
 While they are unmarked nodes
 - Select the unmarked node \(u \) with minimum cost; mark it
 - For each unmarked node \(w \) adjacent to \(u \)
 - if \(\text{cost}(u,w) < \text{cost}(w) \) then \(\text{cost}(w) := \text{cost}(u,w) \)
 - \(\text{prev}[w] = u \)

- Looks a lot like Dijkstra’s algorithm!
Prim’s algorithm Analysis

- Like Dijkstra’s algorithm
- If the “Select the unmarked node u with minimum cost” is done with binary heap then $O((n+m)\log n)$
Kruskal’s Algorithm

- Select edges in order of increasing cost
- Accept an edge to expand tree or forest only if it does not cause a cycle
- Implementation using adjacency list, priority queues and disjoint sets
Kruskal’s Algorithm

Initialize a forest of trees, each tree being a single node
Build a priority queue of edges with priority being lowest cost
Repeat until $|V| - 1$ edges have been accepted {
 Deletemin edge from priority queue
 If it forms a cycle then discard it
 else accept the edge – It will join 2 existing trees yielding a larger tree and reducing the forest by one tree
}
The accepted edges form the minimum spanning tree
Detecting Cycles

- If the edge to be added \((u,v)\) is such that vertices \(u\) and \(v\) belong to the same tree, then by adding \((u,v)\) you would form a cycle
 - Therefore to check, \(\text{Find}(u)\) and \(\text{Find}(v)\). If they are the same discard \((u,v)\)
 - If they are different \(\text{Union}(\text{Find}(u),\text{Find}(v))\)
Properties of trees in K’s algorithm

- Vertices in different trees are disjoint
 - True at initialization and Union won’t modify the fact for remaining trees
- Trees form equivalent classes under the relation “is connected to”
 - u connected to u (reflexivity)
 - u connected to v implies v connected to u (symmetry)
 - u connected to v and v connected to w implies a path from u to w so u connected to w (transitivity)
K’s Algorithm Data Structures

- Adjacency list for the graph
 - To perform the initialization of the data structures below
- Disjoint Set ADT’s for the trees (recall Up tree implementation of Union-Find)
- Binary heap for edges
Example
Initialization

Initially, Forest of 6 trees
\[F = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}\} \]

Edges in a heap (not shown)
Step 1

Select edge with lowest cost (2,5)
Find(2) = 2, Find (5) = 5
Union(2,5)
F = \{\{1\},\{2,5\},\{3\},\{4\},\{6\}\}
1 edge accepted
Step 2

Select edge with lowest cost (2,6)
Find(2) = 2, Find (6) = 6
Union(2,6)
F= \{\{1\},\{2,5,6\},\{3\},\{4\}\}
2 edges accepted
Step 3

Select edge with lowest cost (1,3)

Find(1) = 1, Find (3) = 3

Union(1,3)

F = {{1,3},{2,5,6},{4}}

3 edges accepted
Step 4

Select edge with lowest cost (5,6)

Find(5) = 2, Find (6) = 2

Do nothing

F = \{\{1,3\},\{2,5,6\},\{4\}\}

3 edges accepted
Step 5

Select edge with lowest cost (3,4)
Find(3) = 1, Find (4) = 4
Union(1,4)
F = \{\{1,3,4\},\{2,5,6\}\}
4 edges accepted
Step 6

Select edge with lowest cost (4,5)

Find(4) = 1, Find (5) = 2

Union(1,2)

F = \{1,3,4,2,5,6\}

5 edges accepted : end

Total cost = 10

Although there is a unique spanning tree in this example, this is not generally the case
Kruskal’s Algorithm Analysis

• Initialize forest $O(n)$
• Initialize heap $O(m)$, $m = |E|$
• Loop performed m times
 › In the loop one Deletemin $O(\log m)$
 › Two Find, each $O(\log n)$
 › One Union (at most) $O(1)$
• So worst case $O(m\log m) = O(m\log n)$
Time Complexity Summary

- Recall that \(m = |E| = O(V^2) = O(n^2) \)
- Prim’s runs in \(O((n+m) \log n) \)
- Kruskal’s runs in \(O(m \log m) = O(m \log n) \)
- In practice, Kruskal has a tendency to run faster since graphs might not be dense and not all edges need to be looked at in the Deletemin operations