Binomial Queues

CSE 373
Data Structures
Lecture 12
Reading

• Reading
 › Section 6.8,
Merging heaps

- Binary Heap has limited (fast) functionality
 - FindMin, DeleteMin, and Insert only
 - does not support fast merges of two heaps
- For some applications, the items arrive in prioritized clumps, rather than individually
- Is there somewhere in the heap design that we can give up a little performance so that we can gain faster merge capability?
Binomial Queues

- Binomial Queues are designed to be merged quickly with one another.
- Using pointer-based design we can merge large numbers of nodes at once by simply pruning and grafting tree structures.
- More overhead than Binary Heap, but the flexibility is needed for improved merging speed.
Worst Case Run Times

<table>
<thead>
<tr>
<th></th>
<th>Binary Heap</th>
<th>Binomial Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert</td>
<td>$\Theta(\log N)$</td>
<td>$\Theta(\log N)$</td>
</tr>
<tr>
<td>FindMin</td>
<td>$\Theta(1)$</td>
<td>$O(\log N)$</td>
</tr>
<tr>
<td>DeleteMin</td>
<td>$\Theta(\log N)$</td>
<td>$\Theta(\log N)$</td>
</tr>
<tr>
<td>Merge</td>
<td>$\Theta(N)$</td>
<td>$O(\log N)$</td>
</tr>
</tbody>
</table>
Binomial Queues

• Binomial queues give up $\Theta(1)$ FindMin performance in order to provide $O(\log N)$ merge performance

• A **binomial queue** is a collection (or forest) of heap-ordered trees
 › Not just one tree, but a collection of trees
 › each tree has a defined structure and capacity
 › each tree has the familiar heap-order property
Binomial Queue with 5 Trees

<table>
<thead>
<tr>
<th>depth</th>
<th>number of elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>$2^4 = 16$</td>
</tr>
<tr>
<td>3</td>
<td>$2^3 = 8$</td>
</tr>
<tr>
<td>2</td>
<td>$2^2 = 4$</td>
</tr>
<tr>
<td>1</td>
<td>$2^1 = 2$</td>
</tr>
<tr>
<td>0</td>
<td>$2^0 = 1$</td>
</tr>
</tbody>
</table>
Structure Property

- Each tree contains two copies of the previous tree
 - the second copy is attached at the root of the first copy
- The number of nodes in a tree of depth d is exactly 2^d

<table>
<thead>
<tr>
<th>depth</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of elements</td>
<td>$2^2 = 4$</td>
<td>$2^1 = 2$</td>
<td>$2^0 = 1$</td>
</tr>
</tbody>
</table>
Powers of 2 (one more time)

- Any number N can be represented in base 2: $\sum_{i=0}^{n-1} a_i 2^i$
 - A base 2 value identifies the powers of 2 that are to be included

<table>
<thead>
<tr>
<th>2^3</th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
<th>Hex_{16}</th>
<th>Decimal_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
Numbers of nodes

- Any number of entries in the binomial queue can be stored in a forest of binomial trees.
- Each tree holds the number of nodes appropriate to its depth, i.e., 2^d nodes.
- So the structure of a forest of binomial trees can be characterized with a single binary number.
 - $101_2 \rightarrow 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 5$ nodes.
Structure Examples

<table>
<thead>
<tr>
<th>N</th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2_{10} = 10_2</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4_{10} = 100_2</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3_{10} = 11_2</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5_{10} = 101_2</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
What is a merge?

- There is a direct correlation between
 - the number of nodes in the tree
 - the representation of that number in base 2
 - and the actual structure of the tree
- When we merge two queues of sizes N_1 and N_2, the number of nodes in the new queue is the sum of $N_1 + N_2$
- We can use that fact to help see how fast merges can be accomplished
Example 1.

Merge BQ.1 and BQ.2

Easy Case.

There are no comparisons and there is no restructuring.

\[
\begin{array}{c|c|c|c}
\hline
N=1_{10} = 1_{2} & 2^2 = 4 & 2^1 = 2 & 2^0 = 1 \\
\hline
\end{array}
\]

\[
\begin{array}{c|c|c|c}
\hline
\text{+ BQ.2} & 4 & 8 & \\
\hline
\end{array}
\]

\[
\begin{array}{c|c|c|c}
\hline
N=2_{10} = 10_{2} & 2^2 = 4 & 2^1 = 2 & 2^0 = 1 \\
\hline
\end{array}
\]

\[
\begin{array}{c|c|c|c}
\hline
= \text{BQ.3} & 4 & 8 & 9 \\
\hline
\end{array}
\]

\[
\begin{array}{c|c|c|c}
\hline
N=3_{10} = 11_{2} & 2^2 = 4 & 2^1 = 2 & 2^0 = 1 \\
\hline
\end{array}
\]
Example 2.

Merge BQ.1 and BQ.2

This is an add with a carry out.

It is accomplished with one comparison and one pointer change: $O(1)$
Example 3.

Merge BQ.1 and BQ.2

Part 1 - Form the carry.
Example 3.

Part 2 - Add the existing values and the carry.

<table>
<thead>
<tr>
<th>carry</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N=2_{10}=10_2$</td>
<td>$2^2 = 4$</td>
<td>$2^1 = 2$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>3</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ BQ.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N=3_{10}=11_2$</td>
<td>$2^2 = 4$</td>
<td>$2^1 = 2$</td>
<td>$2^0 = 1$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ BQ.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N=3_{10}=11_2$</td>
<td>$2^2 = 4$</td>
<td>$2^1 = 2$</td>
<td>$2^0 = 1$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>7</th>
<th>3</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>= BQ.3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N=6_{10}=110_2$</td>
<td>$2^2 = 4$</td>
<td>$2^1 = 2$</td>
<td>$2^0 = 1$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>7</th>
<th>3</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N=6_{10}=110_2$</td>
<td>$2^2 = 4$</td>
<td>$2^1 = 2$</td>
<td>$2^0 = 1$</td>
<td></td>
</tr>
</tbody>
</table>
Merge Algorithm

- Just like binary addition algorithm
- Assume trees X_0, \ldots, X_n and Y_0, \ldots, Y_n are binomial queues
 - X_i and Y_i are of type B_i or null

 $C_0 := \text{null}; //\text{initial carry is null}//$

 \text{for } i = 0 \text{ to } n \text{ do}$

 \quad \text{combine } X_i, Y_i, \text{ and } C_i \text{ to form } Z_i \text{ and new } C_{i+1}$

 $Z_{n+1} := C_{n+1}$
Exercise

\[N_{10} = 112 \]

\[N_{10} = 1112 \]

\[2^2 = 4 \]
\[2^1 = 2 \]
\[2^0 = 1 \]

\[2^2 = 4 \]
\[2^1 = 2 \]
\[2^0 = 1 \]
O(log N) time to Merge

- For N keys there are at most $\lceil \log_2 N \rceil$ trees in a binomial forest.
- Each merge operation only looks at the root of each tree.
- Total time to merge is O(log N).
Insert

- Create a single node queue B_0 with the new item and merge with existing queue
- $O(\log N)$ time
DeleteMin

1. Assume we have a binomial forest \(X_0, \ldots, X_m \)
2. Find tree \(X_k \) with the smallest root
3. Remove \(X_k \) from the queue
4. Remove root of \(X_k \) (return this value)
 > This yields a binomial forest \(Y_0, Y_1, \ldots, Y_{k-1} \).
5. Merge this new queue with remainder of the original (from step 3)

• Total time = \(O(\log N) \)
Implementation

- Binomial forest as an array of multiway trees
 - FirstChild, Sibling pointers
DeleteMin Example

FindMin

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

FindMin

0 1 2 3 4 5 6 7

Remove min

0 1 2 3 4 5 6 7

Return this
Why Binomial?

\[
\binom{d}{k} = \frac{d!}{(d-k)!k!}
\]

<table>
<thead>
<tr>
<th>tree depth (d)</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>nodes at depth (k)</td>
<td>1, 4, 6, 4, 1</td>
<td>1, 3, 3, 1</td>
<td>1, 2, 1</td>
<td>1, 1</td>
<td>1</td>
</tr>
</tbody>
</table>
Other Priority Queues

- **Leftist Heaps**
 - \(O(\log N)\) time for insert, deletemin, merge
 - The idea is to have the left part of the heap be long and the right part short, and to perform most operations on the left part.

- **Skew Heaps** (“splaying leftist heaps”)
 - \(O(\log N)\) amortized time for insert, deletemin, merge
Exercise Solution

\[
\begin{array}{c}
\begin{array}{c}
\text{Node 4} \\
\text{Node 9} \\
\text{Node 8}
\end{array}
\end{array}
\quad + \quad
\begin{array}{c}
\begin{array}{c}
\text{Node 2} \\
\text{Node 7} \\
\text{Node 13} \\
\text{Node 1}
\end{array}
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
\text{Node 4} \\
\text{Node 7} \\
\text{Node 8} \\
\text{Node 13} \\
\text{Node 15}
\end{array}
\end{array}
\quad + \quad
\begin{array}{c}
\begin{array}{c}
\text{Node 2} \\
\text{Node 7} \\
\text{Node 10} \\
\text{Node 15}
\end{array}
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
\text{Node 4} \\
\text{Node 7} \\
\text{Node 8} \\
\text{Node 13} \\
\text{Node 15}
\end{array}
\end{array}
\quad + \quad
\begin{array}{c}
\begin{array}{c}
\text{Node 2} \\
\text{Node 7} \\
\text{Node 10} \\
\text{Node 15}
\end{array}
\end{array}
\end{array}
\]