Readings

• Reading
 › Sections 6.1-6.4
Revisiting FindMin

- Application: Find the smallest (or highest priority) item quickly
 - Operating system needs to schedule jobs according to priority instead of FIFO
 - Event simulation (bank customers arriving and departing, ordered according to when the event happened)
 - Find student with highest grade, employee with highest salary etc.
Priority Queue ADT

• Priority Queue can efficiently do:
 › FindMin (and DeleteMin)
 › Insert

• What if we use…
 › Lists: If sorted, what is the run time for Insert and FindMin? Unsorted?
 › Binary Search Trees: What is the run time for Insert and FindMin?
 › Hash Tables: What is the run time for Insert and FindMin?
Less flexibility \rightarrow More speed

- **Lists**
 - If sorted: FindMin is $O(1)$ but Insert is $O(N)$
 - If not sorted: Insert is $O(1)$ but FindMin is $O(N)$

- **Balanced Binary Search Trees (BSTs)**
 - Insert is $O(\log N)$ and FindMin is $O(\log N)$

- **Hash Tables**
 - Insert $O(1)$ but no hope for FindMin

- **BSTs look good but…**
 - BSTs are efficient for all Finds, not just FindMin
 - We only need FindMin
Better than a speeding BST

• We can do better than Balanced Binary Search Trees?
 › Very limited requirements: Insert, FindMin, DeleteMin. The goals are:
 › FindMin is $O(1)$
 › Insert is $O(\log N)$
 › DeleteMin is $O(\log N)$
Binary Heaps

- A binary heap is a binary tree (NOT a BST) that is:
 - Complete: the tree is completely filled except possibly the bottom level, which is filled from left to right
 - Satisfies the heap order property
 - every node is less than or equal to its children
 - or every node is greater than or equal to its children
- The root node is always the smallest node
 - or the largest, depending on the heap order
Heap order property

- A heap provides limited ordering information.
- Each path is sorted, but the subtrees are not sorted relative to each other.
 - A binary heap is NOT a binary search tree.

These are all valid binary heaps (minimum).
Binary Heap vs Binary Search Tree

Binary Heap

5

min value

10 94

97 24

Parent is less than both left and right children

Binary Search Tree

94

min value

10 97

5 24

Parent is greater than left child, less than right child
Structure property

- A binary heap is a complete tree
 - All nodes are in use except for possibly the right end of the bottom row
Examples

- Complete tree, heap order is "max"
- Complete tree, heap order is "min"
- Not complete
- Complete tree, but min heap order is broken
Array Implementation of Heaps (Implicit Pointers)

- Root node = A[1]
- Keep track of current size N (number of nodes)

<table>
<thead>
<tr>
<th>index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>-</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N = 5

-2 4 6 7 5

01234567
FindMin and DeleteMin

- **FindMin**: Easy!
 - Run time = ?

- **DeleteMin**:
 - Delete (and return) value at root node.
DeleteMin

- Delete (and return) value at root node
Maintain the Structure Property

- We now have a “Hole” at the root
 - Need to fill the hole with another value
- When we get done, the tree will have one less node and must still be complete
Maintain the Heap Property

- The last value has lost its node
 - we need to find a new place for it
- We can do a simple insertion sort operation to find the correct place for it in the tree
DeleteMin: Percolate Down

- Copy smaller child up and go down one level
- Done if both children are ≥ item or reached a leaf node
- What is the run time?

4/18/03 Binary Heaps - Lecture 11 17
Percolate Down

PercDown(i:integer, x :integer): {
 // N is the number of entries in heap/
 j : integer;
 Case{
 2i > N : A[i] := x; //at bottom/
 2i = N : if A[2i] < x then
 else A[i] := x;
 else j := 2i+1;
 if A[j] < x then
 A[i] := A[j]; PercDown(j,x);
 else A[i] := x;
 }
}
DeleteMin: Run Time Analysis

- Run time is $O(\text{depth of heap})$
- A heap is a complete binary tree
- Depth of a complete binary tree of N nodes?
 - $\text{depth} = \lceil \log_2(N) \rceil$
- Run time of DeleteMin is $O(\log N)$
Insert

• Add a value to the tree
• Structure and heap order properties must still be correct when we are done
Maintain the Structure Property

- The only valid place for a new node in a complete tree is at the end of the array.
- We need to decide on the correct value for the new node, and adjust the heap accordingly.
Maintain the Heap Property

- The new value goes where?
- We can do a simple insertion sort operation to find the correct place for it in the tree
Insert: Percolate Up

- Start at last node and keep comparing with parent $A[i/2]$
- If parent larger, copy parent down and go up one level
- Done if parent \leq item or reached top node $A[1]$
- Run time?
Insert: Done

• Run time?
PercUp

• Define PercUp which percolates new entry to correct spot.
• Note: the parent of i is $i/2$

```java
PercUp(i : integer, x : integer): {
    ????
}
```
Sentinel Values

- Every iteration of Insert needs to test:
 - if it has reached the top node \(A[1] \)
 - if parent \(\leq \) item
- Can avoid first test if \(A[0] \) contains a very large negative value
 - sentinel \(-\infty < \) item, for all items
- Second test alone always stops at top

<table>
<thead>
<tr>
<th>value</th>
<th>-\infty</th>
<th>2</th>
<th>3</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>10</th>
<th>9</th>
<th>11</th>
<th>9</th>
<th>6</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

4/18/03
Binary Heap Analysis

- Space needed for heap of N nodes: $O(\text{MaxN})$
 - An array of size MaxN, plus a variable to store the size N, plus an array slot to hold the sentinel

- Time
 - FindMin: $O(1)$
 - DeleteMin and Insert: $O(\log N)$
 - BuildHeap from N inputs: $O(N)$
Build Heap

BuildHeap {
 for i = N/2 to 1 by -1 PercDown(i, A[i])
}

N=11
Build Heap
Build Heap
Analysis of Build Heap

- Assume \(N = 2^K - 1 \)
 - Level 1: \(k - 1 \) steps for 1 item
 - Level 2: \(k - 2 \) steps for 2 items
 - Level 3: \(k - 3 \) steps for 4 items
 - Level \(i \): \(k - i \) steps for \(2^{i-1} \) items

Total Steps = \(\sum_{i=1}^{k-1} (k-i)2^{i-1} = 2^k - k - 1 \)

= \(O(N) \)
Other Heap Operations

- **Find(X, H):** Find the element X in heap H of N elements
 - What is the running time? $O(N)$
- **FindMax(H):** Find the maximum element in H
- **Where FindMin is O(1)**
 - What is the running time? $O(N)$
- **We sacrificed performance of these operations in order to get O(1) performance for FindMin**
Other Heap Operations

- DecreaseKey(P,\(\Delta\),H): Decrease the key value of node at position P by a positive amount \(\Delta\), e.g., to increase priority
 - First, subtract \(\Delta\) from current value at P
 - Heap order property may be violated
 - so percolate up to fix
 - Running Time: \(O(\log N)\)
Other Heap Operations

- **IncreaseKey(P, Δ, H):** Increase the key value of node at position P by a positive amount Δ, e.g., to decrease priority
 - First, add Δ to current value at P
 - Heap order property may be violated
 - so percolate down to fix
 - Running Time: O(log N)
Other Heap Operations

- **Delete(P,H):** E.g. Delete a job waiting in queue that has been preemptively terminated by user
 - Use $\text{DecreaseKey}(P, \infty, H)$ followed by DeleteMin
 - Running Time: $O(\log N)$
Other Heap Operations

- Merge(H1,H2): Merge two heaps H1 and H2 of size $O(N)$. H1 and H2 are stored in two arrays.
 - Can do $O(N)$ Insert operations: $O(N \log N)$ time
 - Better: Copy H2 at the end of H1 and use BuildHeap. Running Time: $O(N)$
PercUp Solution

```plaintext
PercUp(i : integer, x : integer): {
    if i = 1 then A[1] := x
    else if A[i/2] < x then
        A[i] := x;
    else
        A[i] := A[i/2];
    Percup(i/2,x);
}
```