Hashing

CSE 373
Data Structures
Lecture 10
Readings

• Reading
 › Chapter 5
The Need for Speed

- Data structures we have looked at so far
 - Use comparison operations to find items
 - Need $O(\log N)$ time for Find and Insert
- In real world applications, N is typically between 100 and 100,000 (or more)
 - $\log N$ is between 6.6 and 16.6
- Hash tables are an abstract data type designed for $O(1)$ Find and Inserts
Fewer Functions Faster

• compare lists and stacks
 › by reducing the flexibility of what we are allowed to do, we can increase the performance of the remaining operations
 › insert(L,X) into a list versus push(S,X) onto a stack

• compare trees and hash tables
 › trees provide for known ordering of all elements
 › hash tables just let you (quickly) find an element
Limited Set of Hash Operations

- For many applications, a limited set of operations is all that is needed
 - Insert, Find, and Delete
 - Note that no ordering of elements is implied
- For example, a compiler needs to maintain information about the symbols in a program
 - user defined
 - language keywords
Direct Address Tables

- Direct addressing using an array is very fast
- Assume
 - keys are integers in the set $U = \{0, 1, \ldots, m-1\}$
 - m is small
 - no two elements have the same key
- Then just store each element at the array location $array[key]$
 - search, insert, and delete are trivial
Direct Access Table

U (universe of keys)
K (Actual keys)

Table:

<table>
<thead>
<tr>
<th>Index</th>
<th>Key</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Direct Address Implementation

Delete(Table T, ElementType x)

 T[key[x]] = NULL //key[x] is an integer

Insert(Table t, ElementType x)

 T[key[x]] = x

Find(Table t, Key k)

 return T[k]
An Issue

• If most keys in U are used
 › direct addressing can work very well (m small)
• The largest possible key in U, say m, may be much larger than the number of elements actually stored (|U| much greater than |K|)
 › the table is very sparse and wastes space
 › in worst case, table too large to have in memory
• If most keys in U are not used
 › need to map U to a smaller set closer in size to K
Mapping the Keys

Key Universe

Hash Function

Table indices

4/18/03 Hashing - Lecture 10 10
Hashing Schemes

- We want to store N items in a table of size M, at a location computed from the key K (which may not be numeric!)
- Hash function
 - Method for computing table index from key
- Need of a collision resolution strategy
 - How to handle two keys that hash to the same index
“Find” an Element in an Array

• Data records can be stored in arrays.
 › A[0] = {“CHEM 110”, Size 89}
 › A[17] = {“CSE 373”, Size 85}

• Class size for CSE 373?
 › Linear search the array – O(N) worst case time
 › Binary search - O(log N) worst case
Go Directly to the Element

- What if we could directly index into the array using the key?
 - $A["CSE 373"] = \{\text{Size 85}\}$
- Main idea behind hash tables
 - Use a key based on some aspect of the data to index directly into an array
 - $O(1)$ time to access records
Indexing into Hash Table

- Need a fast hash function to convert the element key (string or number) to an integer (the hash value) (i.e., map from U to index)
 - Then use this value to index into an array
 - Hash(“CSE 373”) = 157, Hash(“CSE 143”) = 101
- Output of the hash function
 - must always be less than size of array
 - should be as evenly distributed as possible
Choosing the Hash Function

- What properties do we want from a hash function?
 - Want universe of hash values to be distributed randomly to minimize collisions
 - Don’t want systematic nonrandom pattern in selection of keys to lead to systematic collisions
 - Want hash value to depend on all values in entire key and their positions
The Key Values are Important

- Notice that one issue with all the hash functions is that the actual content of the key set matters.
- The elements in K (the keys that are used) are quite possibly a restricted subset of U, not just a random collection:
 - variable names, words in the English language, reserved keywords, telephone numbers, etc, etc.
Simple Hashes

- It's possible to have very simple hash functions if you are certain of your keys.
- For example,
 - Suppose we know that the keys s will be real numbers uniformly distributed over $0 \leq s < 1$.
 - Then a very fast, very good hash function is:
 - $\text{hash}(s) = \text{floor}(s \cdot m)$
 - Where m is the size of the table.
Example of a Very Simple Mapping

- $\text{hash}(s) = \text{floor}(s \cdot m)$ maps from $0 \leq s < 1$ to $0..m-1$
 \[\Rightarrow m = 10 \]

<table>
<thead>
<tr>
<th>s</th>
<th>0.0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{floor}(s \cdot m)$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Note the even distribution. There are collisions, but we will deal with them later.
Perfect Hashing

- In some cases it's possible to map a known set of keys uniquely to a set of index values.
- You must know every single key beforehand and be able to derive a function that works one-to-one.
Mod Hash Function

- One solution for a less constrained key set
 - modular arithmetic
- \(a \mod \text{size} \)
 - remainder when "a" is divided by "size"
 - in C or Java this is written as \(r = a \mod \text{size}; \)
 - If TableSize = 251
 - 408 mod 251 = 157
 - 352 mod 251 = 101
Modulo Mapping

- \(a \mod m \) maps from integers to 0..m-1
 - one to one? no
 - onto? yes

\[
x \mod 4
\]

\[
x_{-4} \rightarrow 0, -3 \rightarrow 1, -2 \rightarrow 2, -1 \rightarrow 3, 0 \rightarrow 0, 1 \rightarrow 1, 2 \rightarrow 2, 3 \rightarrow 3
\]
Hashing Integers

• If keys are integers, we can use the hash function:
 › Hash(key) = key mod TableSize

• Problem 1: What if TableSize is 11 and all keys are 2 repeated digits? (eg, 22, 33, …)
 › all keys map to the same index
 › Need to pick TableSize carefully: often, a prime number
Nonnumerical Keys

• Many hash functions assume that the universe of keys is the natural numbers $\mathbb{N} = \{0, 1, \ldots\}$
• Need to find a function to convert the actual key to a natural number quickly and effectively before or during the hash calculation
• Generally work with the ASCII character codes when converting strings to numbers
Characters to Integers

- If keys are strings can get an integer by adding up ASCII values of characters in key
- We are converting a very large string $c_0c_1c_2 \ldots c_n$ to a relatively small number $c_0+c_1+c_2+\ldots+c_n \mod \text{size}.$

<table>
<thead>
<tr>
<th>character</th>
<th>C</th>
<th>S</th>
<th>E</th>
<th>3</th>
<th>7</th>
<th>3</th>
<th><0></th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII value</td>
<td>67</td>
<td>83</td>
<td>69</td>
<td>32</td>
<td>51</td>
<td>55</td>
<td>51</td>
</tr>
</tbody>
</table>
Hash Must be Onto Table

• Problem 2: What if TableSize is 10,000 and all keys are 8 or less characters long?
 › chars have values between 0 and 127
 › Keys will hash only to positions 0 through $8 \times 127 = 1016$

• Need to distribute keys over the entire table or the extra space is wasted
Problems with Adding Characters

- Problems with adding up character values for string keys
 - If string keys are short, will not hash evenly to all of the hash table
 - Different character combinations hash to same value
 - “abc”, “bca”, and “cab” all add up to the same value (recall this was Problem 1)
Characters as Integers

- A character string can be thought of as a base 256 number. The string $c_1c_2\ldots c_n$ can be thought of as the number $c_n + 256c_{n-1} + 256^2c_{n-2} + \ldots + 256^{n-1}c_1$
- Use Horner’s Rule to Hash! (see Ex. 2.14)

```java
r = 0;
for i = 1 to n do
    r := (c[i] + 256*r) mod TableSize
```
Collisions

• A collision occurs when two different keys hash to the same value
 › E.g. For TableSize = 17, the keys 18 and 35 hash to the same value for the mod17 hash function
 › 18 mod 17 = 1 and 35 mod 17 = 1
• Cannot store both data records in the same slot in array!
Collision Resolution

- **Separate Chaining**
 - Use data structure (such as a linked list) to store multiple items that hash to the same slot

- **Open addressing (or probing)**
 - search for empty slots using a second function and store item in first empty slot that is found
Resolution by Chaining

• Each hash table cell holds pointer to linked list of records with same hash value

• Collision: Insert item into linked list

• To Find an item: compute hash value, then do Find on linked list

• Note that there are potentially as many as TableSize lists
Why Lists?

• Can use List ADT for Find/Insert/Delete in linked list
 › $O(N)$ runtime where N is the number of elements in the particular chain

• Can also use Binary Search Trees
 › $O(\log N)$ time instead of $O(N)$
 › But the number of elements to search through should be small (otherwise the hashing function is bad or the table is too small)
 › generally not worth the overhead of BSTs
Load Factor of a Hash Table

- Let $N =$ number of items to be stored
- Load factor $\lambda = \frac{N}{\text{TableSize}}$
 - TableSize = 101 and $N = 505$, then $\lambda = 5$
 - TableSize = 101 and $N = 10$, then $\lambda = 0.1$
- Average length of chained list $= \lambda$ and so average time for accessing an item $= O(1) + O(\lambda)$
 - Want λ to be smaller than 1 but close to 1 if good hashing function (i.e. TableSize $\approx N$)
 - With chaining hashing continues to work for $\lambda > 1$
Resolution by Open Addressing

• No links, all keys are in the table
 › reduced overhead saves space
• When searching for \(x \), check locations \(h_1(x), h_2(x), h_3(x), \ldots \) until either
 › \(x \) is found; or
 › we find an empty location (\(x \) not present)
• Various flavors of open addressing differ in which probe sequence they use
Cell Full? Keep Looking.

- $h_i(X) = (\text{Hash}(X) + F(i)) \mod \text{TableSize}$
 - Define $F(0) = 0$
- F is the collision resolution function. Some possibilities:
 - Linear: $F(i) = i$
 - Quadratic: $F(i) = i^2$
 - Double Hashing: $F(i) = i \cdot \text{Hash}_2(X)$
Linear Probing

- When searching for K, check locations $h(K)$, $h(K)+1$, $h(K)+2$, ... mod TableSize until either
 - K is found; or
 - we find an empty location (K not present)
- If table is very sparse, almost like separate chaining.
- When table starts filling, we get clustering but still constant average search time.
- Full table \Rightarrow infinite loop.
Primary Clustering Problem

- Once a block of a few contiguous occupied positions emerges in table, it becomes a “target” for subsequent collisions

- As clusters grow, they also merge to form larger clusters.

- Primary clustering: elements that hash to different cells probe same alternative cells
Quadratic Probing

- When searching for x, check locations $h_1(x)$, $h_1(x) + 1^2$, $h_1(x) + 2^2$, ... $\mod \text{TableSize}$ until either
 - x is found; or
 - we find an empty location (x not present)

- No primary clustering but secondary clustering possible
Double Hashing

• When searching for \(x \), check locations \(h_1(x), h_1(x) + h_2(x), h_1(x) + 2h_2(x), \ldots \mod \text{Tablesize} \) until either
 > \(x \) is found; or
 > we find an empty location (\(x \) not present)
• Must be careful about \(h_2(x) \)
 > Not 0 and not a divisor of \(M \)
 > eg, \(h_1(k) = k \mod m_1, \ h_2(k) = 1 + (k \mod m_2) \)
 where \(m_2 \) is slightly less than \(m_1 \)
Rules of Thumb

- Separate chaining is simple but wastes space...
- Linear probing uses space better, is fast when tables are sparse
- Double hashing is space efficient, fast (get initial hash and increment at the same time), needs careful implementation
Rehashing – Rebuild the Table

- Need to use lazy deletion if we use probing (why?)
 - Need to mark array slots as deleted after Delete
 - Consequently, deleting doesn’t make the table any less full than it was before the delete
- If table gets too full ($\lambda \approx 1$) or if many deletions have occurred, running time gets too long and inserts may fail
Rehashing

- Build a bigger hash table of approximately twice the size when λ exceeds a particular value
 - Go through old hash table, ignoring items marked deleted
 - Recompute hash value for each non-deleted key and put the item in new position in new table
 - Cannot just copy data from old table because the bigger table has a new hash function
- Running time is $O(N)$ but happens very infrequently
 - Not good for real-time safety critical applications
Rehashing Example

- Open hashing \(h_1(x) = x \mod 5 \) rehashes to \(h_2(x) = x \mod 11 \).

\[
\begin{array}{cccccc}
\lambda = 1 & 0 & 1 & 2 & 3 & 4 \\
25 & 37 & 83 & & & \\
\lambda = 5/11 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
25 & 37 & 83 & 52 & 98 & & & & & & &
\end{array}
\]
Caveats

- Hash functions are very often the cause of performance bugs.
- Hash functions often make the code not portable.
- If a particular hash function behaves badly on your data, then pick another.
- Always check where the time goes