Disjoint Union / Find

CSE 373
Data Structures
Unit 14

Reading: Chapter 8

Equivalence Relations

- A relation \(R \) is defined on set \(S \) if for every pair of elements \(a, b \in S \), \(a R b \) is either true or false.
- An equivalence relation is a relation \(R \) that satisfies the 3 properties:
 - Reflexive: \(a R a \) for all \(a \in S \)
 - Symmetric: \(a R b \) iff \(b R a \); for all \(a, b \in S \)
 - Transitive: \(a R b \) and \(b R c \) implies \(a R c \)

Equivalence Classes

- Given an equivalence relation \(R \), decide whether a pair of elements \(a, b \in S \) is such that \(a R b \).
- The equivalence class of an element \(a \) is the subset of \(S \) of all elements related to \(a \).
- Equivalence classes are disjoint sets

Dynamic Equivalence Problem

- Starting with each element in a singleton set, and an equivalence relation, build the equivalence classes.
- Requires two operations:
 - Find the equivalence class (set) of a given element
 - Union of two sets
- It is a dynamic (on-line) problem because the sets change during the operations and Find must be able to cope!
Disjoint Union - Find

- Maintain a set of disjoint sets.
 > \{3,5,7\}, \{4,2,8\}, \{9\}, \{1,6\}
- Each set has a unique name, one of its members
 > \{3,5,7\}, \{4,2,8\}, \{9\}, \{1,6\}

Find

- Find(x) – return the name of the set containing x.
 > \{3,5,7,1,6\}, \{4,2,8\}, \{9\},
 > Find(1) = 5
 > Find(4) = 8

Union

- Union(x,y) – take the union of two sets named x and y
 > \{3,5,7\}, \{4,2,8\}, \{9\}, \{1,6\}
 > Union(5,1)
 > \{3,5,7,1,6\}, \{4,2,8\}, \{9\},

An Application

- Build a random maze by erasing edges.
An Application (ct’d)

• Pick Start and End

Desired Properties

• None of the boundary is deleted
• Every cell is reachable from every other cell.
• There are no cycles – no cell can reach itself by a path unless it retraces some part of the path.

An Application (ct’d)

• Repeatedly pick random edges to delete.
A Good Solution

Number the Cells

We have disjoint sets $S = \{ \{1\}, \{2\}, \{3\}, \{4\}, \ldots, \{36\} \}$ each cell is unto itself. We have all possible edges $E = \{(1,2), (1,7), (2,8), (2,3), \ldots\}$ 60 edges total.

<table>
<thead>
<tr>
<th>Start</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

End

Good Solution : A Hidden Tree

Basic Algorithm

- $S =$ set of sets of connected cells
- $E =$ set of edges

While there is more than one set in S
 pick a random edge (x,y)
 $u := \text{Find}(x); \ v := \text{Find}(y);$
 if $u \neq v$ then
 $\text{Union}(u,v) \ //\text{knock down the wall between the cells (cells in}$
 $\text{same set are connected)}$
 $\text{Remove (x,y) from E} \ //\text{the same set are connected)$

- If $u=v$ there is already a path between x and y
- All remaining members of E form the maze
Example Step

Pick (8,14)

Example

\[S = \{1,2,7,8,9,13,19\} \]

\[\text{Find}(8) = 7 \]

\[\text{Find}(14) = 20 \]

\[\text{Union}(7,20) \]

Example at the End

Pick (19,20)

Example at the End

\[S = \{1,2,3,4,5,6,7,\ldots,36\} \]
Up-Tree for DU/F

- **Initial state**: 1 2 3 4 5 6 7
- **Intermediate state**:

 ![Diagram of initial state with nodes 1, 2, 3, 4, 5, 6, 7]

 Roots are the names of each set.

Find Operation

- **Find(x)** follow x to the root and return the root

 ![Diagram of find operation with node 6 leading to root 7]

 Find(6) = 7

Union Operation

- **Union(i,j)** - assuming i and j roots, point i to j.

 ![Diagram of union operation with nodes 1, 7 leading to root 7]

Simple Implementation

- **Array of indices** (Up[i] is parent of i)

 Up[0] = 0 means x is a root.

 ![Diagram of simple implementation with array and nodes]

 Up = [0 1 0 7 7 5 0]
Union

Union(up[]) : integer array, x,y : integer) : {
 //precondition: x and y are roots/
 Up[x] := y
}

Constant Time!

Find

• Design Find operator
 › Recursive version
 › Iterative version

Find(up[]) : integer array, x : integer) : integer {
 //precondition: x is in the range 1 to size/
 ???
}

A Bad Case

1 2 3 ... n
 3 4 5 6 7
 1 2 3 4 5
1 2 3 4 5

Find(1) n steps!!

Weighted Union

• Weighted Union (weight = number of nodes)
 › Always point the smaller tree to the root of the larger tree
Example Again

Analysis of Weighted Union

- With weighted union an up-tree of height h has weight at least 2^h.
- Proof by induction
 - Basis: $h = 0$. The up-tree has one node, $2^0 = 1$
 - Inductive step: Assume true for all $h' < h$.

\[
\begin{align*}
W(T_1) & \geq W(T_2) \\
W(T) & \geq 2^{h-1} + 2^{h-1} = 2^h
\end{align*}
\]

Analysis of Weighted Union

- Let T be an up-tree of weight n formed by weighted union. Let h be its height.
- $n \geq 2^h$
- $\log_2 n \geq h$
- Find(x) in tree T takes $O(\log n)$ time.
- Can we do better?

Worst Case for Weighted Union

\[
\begin{align*}
n/2 \text{ Weighted Unions} \\
n/4 \text{ Weighted Unions}
\end{align*}
\]
Example of Worst Cast (cont’)

After $n-1 = n/2 + n/4 + \ldots + 1$ Weighted Unions

If there are $n = 2^k$ nodes then the longest path from leaf to root has length k.

Weighted Union

W-Union($i,j : \text{index}$){

// i and j are roots/

wi := weight[i];
wj := weight[j];
if wi < wj then
 up[i] := j;
 weight[j] := wi + wj;
else
 up[j] := i;
 weight[i] := wi + wj;
}

Elegant Array Implementation

Can save the extra space by storing the complement of weight in the space reserved for the root.

Path Compression

- On a Find operation point all the nodes on the search path directly to the root.

Self-Adjustment Works

Path Compression Find

```cpp
PC-Find(i : index) {
    r := i;
    while up[r] ≠ 0 do //find root//
        r := up[r];
    if i ≠ r then //compress path//
        k := up[i];
        while k ≠ r do
            up[i] := r;
            i := k;
            k := up[k]
        return(r)
}
```

Example

Disjoint Union / Find with Weighted Union and PC

- Worst case time complexity for a W-Union is O(1) and for a PC-Find is O(log n).
- Time complexity for m ≥ n operations on n elements is O(m log* n) where log* n is a very slow growing function.
 » log * n < 7 for all reasonable n. Essentially constant time per operation!
Amortized Complexity

• For disjoint union / find with weighted union and path compression.
 › average time per operation is essentially a constant.
 › worst case time for a PC-Find is $O(\log n)$.
• An individual operation can be costly, but over time the average cost per operation is not.

Find Solutions

Recursive
Find(up[] : integer array, x : integer) : integer {
 //precondition: x is in the range 1 to size/
 if up[x] = 0 then return x
 else return Find(up,up[x]);
}

Iterative
Find(up[] : integer array, x : integer) : integer {
 //precondition: x is in the range 1 to size/
 while up[x] ≠ 0 do
 x := up[x];
 return x;
}