Why Do We Need Trees?

- Lists, Stacks, and Queues are linear relationships
- Information often contains hierarchical relationships
 - File directories or folders
 - Moves in a game
 - Hierarchies in organizations

Tree Jargon

- root
- nodes and edges
- leaves
- parent, children, siblings
- ancestors, descendants
- subtrees
- path, path length
- height, depth

More Tree Jargon

- **Length** of a path = number of edges
- **Depth** of a node $N = \text{length of path from root to } N$
- **Height** of node $N = \text{length of longest path from } N \text{ to a leaf}$
- **Depth of tree** = depth of deepest node
- **Height of tree** = height of root
Definition and Tree Trivia

- A tree is a set of nodes, i.e., either
 - it’s an empty set of nodes, or
 - it has one node called the root from which zero or more trees (subtrees) descend
- Two nodes in a tree have at most one path between them
- Can a non-zero path from node N reach node N again?
 No. Trees can never have cycles (loops)

Paths

- A tree with N nodes always has N-1 edges (prove it by induction)

 Base Case: N=1

 Inductive Hypothesis: Suppose that a tree with N=k nodes always has k-1 edges.

 Induction: Suppose N=k+1…

Implementation of Trees

- One possible pointer-based Implementation
 - tree nodes with value and a pointer to each child
 - but how many pointers should we allocate space for?
- A more flexible pointer-based implementation
 - 1st Child / Next Sibling List Representation
 - Each node has 2 pointers: one to its first child and one to next sibling
 - Can handle arbitrary number of children

Arbitrary Branching

```
A
  /\  
B   C
  /\  /
E   D
   /\  
  F  
```

```
A
/   
B   C
|   / 
|  D  
|  /  |
E  F
```

Nodes of same depth

FirstChild Sibling
Binary Trees

• Every node has at most two children
 › Most popular tree in computer science
• Given N nodes, what is the minimum depth of a binary tree?

 1
 2 3
 4 5 6 7

Minimum depth vs node count

• At depth d, you can have N = 2^d to 2^{d+1} - 1 nodes
• minimum depth d is \(\Theta(\log N) \)

Maximum depth vs node count

• What is the maximum depth of a binary tree?
 › Degenerate case: Tree is a linked list!
 › Maximum depth = N-1
• Goal: Would like to keep depth at around \(\log N \) to get better performance than linked list for operations like Find
A degenerate tree

A linked list (each node has one children).

Traversing Binary Trees

- The definitions of the traversals are recursive definitions. For example:
 - Visit the root
 - Visit the left subtree (i.e., visit the tree whose root is the left child) and do this recursively
 - Visit the right subtree (i.e., visit the tree whose root is the right child) and do this recursively

- Traversal definitions can be extended to general (non-binary) trees

Traversing Binary Trees

- Preorder: Node, then Children (starting with the left) recursively + * + A B C D

- Inorder: Left child recursively, Node, Right child recursively A + B * C + D

- Postorder: Children recursively, then Node A B + C * D +

Binary Search Trees

- Binary search trees are binary trees in which
 - all values in the node’s left subtree are less than node value
 - all values in the node’s right subtree are greater than node value

- Operations:
 - Find, FindMin, FindMax, Insert, Delete

What happens when we traverse the tree in inorder?
Operations on Binary Search Trees

- How would you implement these?
 - Recursive definition of binary search trees allows recursive routines
 - Call by reference helps too
- FindMin
- FindMax
- Find
- Insert
- Delete

Find

Find(T : tree pointer, x : element): tree pointer {
 case {
 T = null : return null;
 T.data = x : return T;
 T.data > x : return Find(T.left,x);
 T.data < x : return Find(T.right,x)
 }
}

FindMin

- Design recursive FindMin operation that returns the smallest element in a binary search tree.

 FindMin(T : tree pointer) : tree pointer {
 // precondition: T is not null
 }

Insert Operation

- **Insert** \((T: \text{tree}, X: \text{element})\)
 - Do a “Find” operation for \(X\)
 - If \(X\) is found, update (no need to insert)
 - Else, “Find” stops at a **NULL** pointer
 - Insert Node with \(X\) there
- Example: Insert 95

```
• Insert(T: tree, X: element)
  › Do a “Find” operation for X
  › If X is found, update (no need to insert)
  › Else, “Find” stops at a NULL pointer
  › Insert Node with X there
```

```
Example: Insert 95
```

Insert Done with call-by-reference

```
Insert(T : reference tree pointer, x : element) : integer {
if T = null then
  T := new tree; T.data := x; return 1; //the links to children are null
  
case
    T.data = x : return 0;
    T.data > x : return Insert(T.left, x);
    T.data < x : return Insert(T.right, x);
endcase
}
```

```
Advantage of reference parameter is that the call has the original pointer not a copy.
```

Delete Operation

- **Delete** is a bit trickier…Why?
- Suppose you want to delete 10
- Strategy:
 › Find 10
 › Delete the node containing 10
- Problem: When you delete a node, what do you replace it by?
Delete Operation

• Problem: When you delete a node, what do you replace it by?
• Solution:
 › If it has no children, by NULL
 › If it has 1 child, by that child
 › If it has 2 children, by the node with the smallest value in its right subtree (the successor of the node)

![Diagram of node deletion with no children](image)

Delete “5” - No children

Find 5 node
Then Free the 5 node and NULL the pointer to it

![Diagram of node deletion with one child](image)

Delete “24” - One child

Find 24 node
Then Free the 24 node and replace the pointer to it with a pointer to its child

![Diagram of node deletion with two children](image)

Delete “10” - two children

Find 10, Copy the smallest value in right subtree into the node
Then (recursively) Delete node with smallest value in right subtree Note: it cannot have two children (why?)
Then Delete “11” - One child

Remember 11 node

\[\begin{array}{c}
94 \\
11 \\
5 \\
11 \\
97
\end{array} \quad \begin{array}{c}
94 \\
11 \\
5 \\
24 \\
97
\end{array} \quad \begin{array}{c}
11 \\
17
\end{array} \]

Then Free the 11 node and replace the pointer to it with a pointer to its child

FindMin Solution

FindMin(T : tree pointer) : tree pointer {
 // precondition: T is not null
 if T.left = null return T
 else return FindMin(T.left)
}