Bucket Sort: Sorting Integers

- The goal: sort N numbers, all between 1 to k.
- Example: sort 8 numbers 3,6,7,4,11,3,5,7. All between 1 to 12.
- The method: Use an array of k queues. Queue j (for 1 ≤ j ≤ k) keeps the input numbers whose value is j.
- Each queue is denoted ‘a bucket’.
- Scan the list and put the elements in the buckets.
- Output the content of the buckets from 1 to k.

Radix Sort: Sorting integers

- Historically goes back to the 1890 census.
- Radix sort = multi-pass bucket sort of integers in the range 0 to B^P-1
- Bucket-sort from least significant to most significant “digit” (base B)
- Requires P(B+N) operations where P is the number of passes (the number of base B digits in the largest possible input number).
- If P and B are constants then O(N) time to sort!

Bucket Sort: Sorting Integers

- Example: sort 8 numbers 3,6,7,4,11,3,9,7 all between 1 to 12.
- Step 1: scan the list and put the elements in the queues

 \[
 \begin{array}{cccccccc}
 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
 3 & 4 & 6 & 7 & 9 & 11
 \end{array}
 \]

- Step 2: concatenate the queues

 \[
 \begin{array}{cccccccc}
 3 & 4 & 6 & 7 & 9 & 11 \\
 3 & 4 & 6 & 7 & 9 & 11
 \end{array}
 \]

- Time complexity: O(n+k).
Radix Sort Example

<table>
<thead>
<tr>
<th>Input data</th>
<th>After 1st pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>478</td>
<td>721</td>
</tr>
<tr>
<td>537</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>123</td>
</tr>
<tr>
<td>721</td>
<td>537</td>
</tr>
<tr>
<td>3</td>
<td>67</td>
</tr>
<tr>
<td>38</td>
<td>478</td>
</tr>
<tr>
<td>123</td>
<td>38</td>
</tr>
<tr>
<td>67</td>
<td>9</td>
</tr>
</tbody>
</table>

This example uses B=10 and base 10 digits for simplicity of demonstration. Larger bucket counts should be used in an actual implementation.

Properties of Radix Sort

• Not in-place
 › needs lots of auxiliary storage.

• Stable
 › equal keys always end up in same bucket in the same order.

• Fast
 › Time to sort N numbers in the range 0 to B^p-1 is O(P(B+N)) (P iterations, B buckets in each)
“Divide and Conquer”

- Very important strategy in computer science:
 - Divide problem into smaller parts
 - Independently solve the parts
 - Combine these solutions to get overall solution
- **Idea 1**: Divide array into two halves, *recursively* sort left and right halves, then *merge* two halves. **Mergesort**
- **Idea 2**: Partition array into items that are “small” and items that are “large”, then recursively sort the two sets. **Quicksort**

Mergesort Example

Mergesort

- Divide it in two at the midpoint
- Conquer each side in turn (by recursively sorting)
- Merge two halves together

Auxiliary Array

- The merging requires an auxiliary array.
Auxiliary Array

• The merging requires an auxiliary array.

Merging

- Normal
- Left completed first
- Copy

Merging

- First
- Right completed first
- Second

Auxiliary Array
Merging

Merge(A[], T[] : integer array, left, right : integer) : {
 mid, i, j, k, l, target : integer;
 mid := (right + left)/2;
 i := left; j := mid + 1; target := left;
 while i ≤ mid and j ≤ right do
 else T[target] := A[j]; j := j + 1;
 target := target + 1;
 if i > mid then // left completed //
 for k := left to target-1 do A[k] := T[k];
 if j > right then // right completed //
 k := mid; i := right;
 while k ≥ i do A[i] := A[k]; k := k-1; l := l-1;
 for k := left to target-1 do A[k] := T[k];
 }
}

Recursive Mergesort

Mergesort(A[], T[] : integer array, left, right : integer) : {
 if left < right then
 mid := (left + right)/2;
 Mergesort(A,T,left,mid);
 Mergesort(A,T,mid+1,right);
 Merge(A,T,left,right);
 }

MainMergesort(A[1..n]: integer array, n : integer) : {
 T[1..n]: integer array;
 Mergesort[A,T,1,n];
}

Iterative Mergesort

- Merge by 1
- Merge by 2
- Merge by 4
- Merge by 8
- Need of a last copy ↓
Iterative Mergesort

IterativeMergesort(A[1..n]: integer array, n : integer) : {
 //precondition: n is a power of 2
 i, m, parity : integer;
 T[1..n]: integer array;
 m := 2; parity := 0;
 while m ≤ n do
 for i = 1 to n – m + 1 by m do
 if parity = 0 then Merge(A, T, i, i+m-1);
 else Merge(T, A, i, i+m-1);
 parity := 1 – parity;
 m := 2*m;
 if parity = 1 then
 for i = 1 to n do A[i] := T[i];
 }
}

How do you handle non-powers of 2?
How can the final copy be avoided?

Mergesort Analysis

- Let T(N) be the running time for an array of N elements
- Mergesort divides array in half and calls itself on the two halves. After returning, it merges both halves using a temporary array
- Each recursive call takes T(N/2) and merging takes O(N)

Mergesort Recurrence Relation

- The recurrence relation for T(N) is:
 - T(1) ≤ a
 - base case: 1 element array constant time
 - T(N) ≤ 2T(N/2) + bN
 - Sorting N elements takes
 - the time to sort the left half
 - plus the time to sort the right half
 - plus an O(N) time to merge the two halves
 - T(N) = O(n log n) (see Lecture 5 Slide17)

Properties of Mergesort

- Not in-place
 - Requires an auxiliary array (O(n) extra space)
- Stable
 - Make sure that left is sent to target on equal values.
- Iterative Mergesort reduces copying.
Quicksort

- Quicksort uses a divide and conquer strategy, but does not require the O(N) extra space that MergeSort does
 - Partition array into left and right sub-arrays
 - Choose an element of the array, called pivot
 - the elements in left sub-array are all less than pivot
 - elements in right sub-array are all greater than pivot
 - Recursively sort left and right sub-arrays
 - Concatenate left and right sub-arrays in O(1) time

“Four easy steps”

- To sort an array S
 1. If the number of elements in S is 0 or 1, then return. The array is sorted.
 2. Pick an element v in S. This is the pivot value.
 3. Partition S-{v} into two disjoint subsets, S_1 = {all values x≤v}, and S_2 = {all values x>v}.
 4. Return QuickSort(S_1), v, QuickSort(S_2)

Details, details

- Implementing the actual partitioning
- Picking the pivot
 - want a value that will cause |S_1| and |S_2| to be non-zero, and close to equal in size if possible
- Dealing with cases where an element equals the pivot
Quicksort Partitioning

• Need to partition the array into left and right sub-arrays
 › the elements in left sub-array are ≤ pivot
 › elements in right sub-array are ≥ pivot
• How do the elements get to the correct partition?
 › Choose an element from the array as the pivot
 › Make one pass through the rest of the array and swap as needed to put elements in partitions

Partitioning: Choosing the pivot

• One implementation (there are others)
 › median3 finds pivot and sorts left, center, right
 • Median3 takes the median of leftmost, middle, and rightmost elements
 • An alternative is to choose the pivot randomly (need a random number generator; “expensive”)
 • Another alternative is to choose the first element (but can be very bad. Why?)
 › Swap pivot with next to last element

Partitioning in-place

› Set pointers i and j to start and end of array
› Increment i until you hit element A[i] > pivot
› Decrement j until you hit element A[j] < pivot
› Swap A[i] and A[j]
› Repeat until i and j cross
› Swap pivot (at A[N-2]) with A[i]

Example

Choose the pivot as the median of three

\[
\begin{array}{ccccccccccc}
8 & 1 & 4 & 9 & 0 & 3 & 5 & 2 & 7 & 6 \\
\end{array}
\]
Median of 0, 6, 8 is 6. Pivot is 6

\[
\begin{array}{ccccccccccc}
0 & 1 & 4 & 9 & 7 & 3 & 5 & 2 & 6 & 8 \\
\end{array}
\]
Place the largest at the right and the smallest at the left.
Swap pivot with next to last element.
Recursive Quicksort

Quicksort(A[]): integer array, left, right: integer:
 pivotindex: integer;
 if left + CUTOFF ≤ right then
 pivot := median3(A, left, right);
 pivotindex := Partition(A, left, right - 1, pivot);
 Quicksort(A, left, pivotindex - 1);
 Quicksort(A, pivotindex + 1, right);
 else
 Insertionsort(A, left, right);

Don't use quicksort for small arrays.
CUTOFF = 10 is reasonable.

Quicksort Best Case Performance

- Algorithm always chooses best pivot and splits sub-arrays in half at each recursion
 - \(T(0) = T(1) = O(1) \)
 - constant time if 0 or 1 element
 - For \(N > 1 \), 2 recursive calls plus linear time for partitioning
 - \(T(N) = 2T(N/2) + O(N) \)
 - Same recurrence relation as Mergesort
 - \(T(N) = O(N \log N) \)
Quicksort Worst Case Performance

- Algorithm always chooses the worst pivot – one sub-array is empty at each recursion
 - \(T(N) \leq a \) for \(N \leq C \)
 - \(T(N) \leq T(N-1) + bN \)
 - \(\leq T(N-2) + b(N-1) + bN \)
 - \(\leq T(C) + b(C+1) + \ldots + bN \)
 - \(\leq a + b(C + (C+1) + (C+2) + \ldots + N) \)
 - \(T(N) = O(N^2) \)
- Fortunately, average case performance is \(O(N \log N) \) (see text for proof)

Properties of Quicksort

- Not stable because of long distance swapping.
- No iterative version (without using a stack).
- Pure quicksort not good for small arrays.
- “In-place”, but uses auxiliary storage because of recursive call (\(O(\log n) \) space).
- \(O(n \log n) \) average case performance, but \(O(n^2) \) worst case performance.

Folklore

- “Quicksort is the best in-memory sorting algorithm.”
- Truth
 - Quicksort uses very few comparisons on average.
 - Quicksort does have good performance in the memory hierarchy.
 - Small footprint
 - Good locality

How fast can we sort?

- Heapsort, Mergesort, and Quicksort all run in \(O(N \log N) \) best case running time
- Can we do any better?
- No, if sorting is comparison-based.
- We saw that radix sort is \(O(N) \) but it is only for integers from bounded-range.
Sorting Model

- Recall the basic assumption: we can only compare two elements at a time
 - we can only reduce the possible solution space by half each time we make a comparison
- Suppose you are given N elements
 - Assume no duplicates
- How many possible orderings can you get?
 - Example: a, b, c \((N = 3)\)

Permutations

- How many possible orderings can you get?
 - Example: a, b, c \((N = 3)\)
 - \((a \ b \ c), (a \ c \ b), (b \ a \ c), (b \ c \ a), (c \ a \ b), (c \ b \ a)\)
 - 6 orderings = \(3 \cdot 2 \cdot 1 = 3!\) (i.e., “3 factorial”)
 - All the possible permutations of a set of 3 elements
- For N elements
 - N choices for the first position, \((N-1)\) choices for the second position, ..., 2 choices, 1 choice
 - \(N(N-1)(N-2)\ldots(2)(1) = N!\) possible orderings

Decision Tree

- A Decision Tree is a Binary Tree such that:
 - Each node = a set of orderings
 - i.e., the remaining solution space
 - Each edge = 1 comparison
 - Each leaf = 1 unique ordering
 - How many leaves for N distinct elements?
 - \(N!,\ i.e.,\ a\ leaf\ for\ each\ possible\ ordering\)
- Only 1 leaf has the ordering that is the desired correctly sorted arrangement
Decision Trees and Sorting

- Every comparison-based sorting algorithm corresponds to a decision tree
 - Finds correct leaf by choosing edges to follow
 - i.e., by making comparisons
 - Each decision reduces the possible solution space by one half
- Run time is \geq maximum no. of comparisons
 - maximum number of comparisons is the length of the longest path in the decision tree, i.e. the height of the tree

How many leaves on a tree?

- Suppose you have a binary tree of height d. How many leaves can the tree have?
 - $d = 1$ at most 2 leaves,
 - $d = 2$ at most 4 leaves, etc.

Lower bound on Height

- A binary tree of height d has at most 2^d leaves
 - depth $d = 1$ 2 leaves, $d = 2$ 4 leaves, etc.
 - Can prove by induction
- Number of leaves, $L \leq 2^d$
- Height $d > \log_2 L$
- The decision tree has $N!$ leaves
- So the decision tree has height $d \geq \log_2(N!)$
\[\log(N!) \approx \sqrt{2\pi n} \left(\frac{n}{e} \right)^n \]

Sterling's formula

\[\log(N!) = \log\left(N \cdot (N-1) \cdot (N-2) \cdots (2) \cdot (1) \right) \]

\[= \log N + \log(N-1) + \log(N-2) + \cdots + \log 2 + \log 1 \]

\[\geq \log N + \log(N-1) + \log(N-2) + \cdots + \log \frac{N}{2} \geq \frac{N}{2} \log \frac{N}{2} \]

\[\geq \frac{N}{2} \left(\log N - \log 2 \right) = \frac{N}{2} \log N - \frac{N}{2} \]

\[= \Omega(N \log N) \]

Summary of Sorting

- **Sorting choices:**
 - \(O(N^2) \) – Bubblesort, Insertion Sort
 - \(O(N \log N) \) average case running time:
 - Heapsort: In-place, not stable.
 - Mergesort: \(O(N) \) extra space, stable.
 - Run time of any comparison-based sorting algorithm is \(\Omega(N \log N) \)