Sorting (Part I)

CSE 373
Data Structures
Unit 16

Reading: Sections 7.1-7.3 and 7.5

Sorting

• Input
 › an array A of data records
 › a key value in each data record
 › a comparison function which imposes a consistent ordering on the keys (e.g., integers)

• Output
 › reorganize the elements of A such that
 • For any i and j, if i < j then A[i] ≤ A[j]

Consistent Ordering

• The comparison function must provided a consistent *ordering* on the set of possible keys
 › You can compare any two keys and get back an indication of \(a < b, a > b, \) or \(a = b \)
 › The comparison functions must be consistent
 • If \(\text{compare}(a, b) \) says \(a < b \), then \(\text{compare}(b, a) \) must say \(b > a \)
 • If \(\text{compare}(a, b) \) says \(a = b \), then \(\text{compare}(b, a) \) must say \(b = a \)
 • If \(\text{compare}(a, b) \) says \(a = b \), then \(\text{equals}(a, b) \) and \(\text{equals}(b, a) \) must say \(a = b \)

Why Sort?

• Sorting algorithms are among the most frequently used algorithms in computer science
• Allows binary search of an N-element array in \(O(\log N) \) time
• Allows \(O(1) \) time access to \(k \)th largest element in the array for any \(k \)
• Allows easy detection of any duplicates
Space

- How much space does the sorting algorithm require in order to sort the collection of items?
 › Is copying needed? $O(n)$ additional space
 › In-place sorting – no copying – $O(1)$ additional space
 › Somewhere in between for “temporary”, e.g. $O(\log n)$ space
 › External memory sorting – data so large that does not fit in memory

Time

- How fast is the algorithm?
 › The definition of a sorted array A says that for any $i < j$, $A[i] < A[j]$
 › This means that you need to at least check on each element at the very minimum, i.e., at least $O(N)$
 › And you could end up checking each element against every other element, which is $O(N^2)$
 › The big question is: How close to $O(N)$ can you get?

Stability

- Stability: Does it rearrange the order of input data records which have the same key value (duplicates)?
 › E.g. Phone book sorted by name. Now sort by county – is the list still sorted by name within each county?
 › Extremely important property for databases
 › A stable sorting algorithm is one which does not rearrange the order of duplicate keys
Example

Bubblesort

```
bubble(A[1..n]: integer array, n : integer): {
    i, j : integer;
    for i = 1 to n-1 do
        for j = 2 to n-i+1 do
}

SWAP(a,b) : {
    t :integer;
    t:=a; a:=b; b:=t;
}
```

i=1: Largest element is placed at last position
i=k: kth Largest element is placed at kth to last position

Put the largest element in its place

```
larger value?  2 3 8 8 1 2 3 7 8 9 10 12 18 15 16 17 14
1 2 3 7 8 9 10 12 23 18 15 16 17 14
1 2 3 7 8 9 10 12 18 23 15 16 17 14
1 2 3 7 8 9 10 12 18 15 16 17 15
1 2 3 7 8 9 10 12 23 18 15 16 17 14
1 2 3 7 8 9 10 12 18 15 23 16 17 14
1 2 3 7 8 9 10 12 18 15 16 23 17 14
1 2 3 7 8 9 10 12 18 15 16 17 23 14
1 2 3 7 8 9 10 12 18 15 16 17 14 | 1
```

Bubble Sort

- “Bubble” elements to to their proper place in the array by comparing elements i and i+1, and swapping if A[i] > A[i+1]
 - Bubble every element towards its correct position
 - last position has the largest element
 - then bubble every element except the last one towards its correct position
 - then repeat until done or until the end of the quarter, whichever comes first ...
Put 2nd largest element in its place

Two elements done, only n-2 more to go ...

Bubble Sort: Just Say No

• “Bubble” elements to to their proper place in the array by comparing elements i and i+1, and swapping if A[i] > A[i+1]
• We bubblize for i=1 to n (i.e, n times)
• Each bubblization is a loop that makes n-i comparisons
• This is O(n²)

Insertion Sort

• What if first k elements of array are already sorted?
 › 4, 7, 12, 5, 19, 16
• We can shift the tail of the sorted elements list down and then insert next element into proper position and we get k+1 sorted elements
 › 4, 5, 7, 12, 19, 16

Insertion Sort

InsertionSort(A[1..N]: integer array, N: integer) {
 i, j, temp: integer;
 for i = 2 to N {
 temp := A[i];
 j := i-1;
 while j > 1 and A[j-1] > temp {
 A[j] = temp;
 }
 }
}

• Is Insertion sort in place? Stable? Running time = ?
• Have we used this before?
Insertion Sort Characteristics

- In place and Stable
- Running time
 - Worst case is $O(N^2)$
 - reverse order input
 - must copy every element every time
- Good sorting algorithm for almost sorted data
 - Each item is close to where it belongs in sorted order.

Inversions

- An inversion is a pair of elements in wrong order
- By definition, a sorted array has no inversions
- So you can think of sorting as the process of removing inversions in the order of the elements
Inversions

• A single value out of place can cause several inversions

Reverse order

• All values out of place (reverse order) causes numerous inversions

Inversions and Adjacent Swap Sorts

• "Average" list will contain half the max number of inversions \(\frac{(n-1)n}{4} \)
 › So the average running time of Insertion sort is \(\Theta(N^2) \) (i.e, \(O(N^2) \) is a tight bound)

• Any sorting algorithm that only swaps adjacent elements requires \(\Omega(N^2) \) time
 because each swap removes only one inversion (lower bound)
Heap Sort

- We use a Max-Heap
- Root node = A[1]
- Keep track of current size N (number of nodes)

Using Binary Heaps for Sorting

- Build a max-heap
- Do N DeleteMax operations and store each Max element as it comes out of the heap
- Data comes out in largest to smallest order
- Where can we put the elements as they are removed from the heap?

1 Removal = 1 Addition

- Every time we do a DeleteMax, the heap gets smaller by one node, and we have one more node to store
 - Store the data at the end of the heap array
 - Not "in the heap" but it is in the heap array

Repeated DeleteMax
Heap Sort is In-place

• After all the DeleteMaxs, the heap is gone but the array is full and is in sorted order

<table>
<thead>
<tr>
<th>value</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>N = 0</td>
</tr>
</tbody>
</table>

Heapsort: Analysis

• Running time
 › time to build max-heap is \(O(N) \)
 › time for \(N \) DeleteMax operations is \(N \cdot O(\log N) \)
 › total time is \(O(N \log N) \)

• Can also show that running time is \(\Omega(N \log N) \) for some inputs,
 › so worst case is \(\Theta(N \log N) \)
 › Average case running time is also \(O(N \log N) \)

• Heapsort is in-place but not stable (why?)