Welcome to
CSE 373
Data Structures

Staff

• Instructor
 › Tami Tamir
tami@cs.washington.edu
 office hours: Friday 11:30-12:30 or by appointment

• TA’s
 › Chris Baker, clbaker@cs.washington.edu
 › Valentin Razmov, valentin@cs.washington.edu

See web-page for office hours.

Web Page

• All info is on the web page for CSE 373
 › http://www.cs.washington.edu/373
 › also known as
 • http://www.cs.washington.edu/education/courses/373/03au

CSE 373 E-mail List

• Subscribe by going to the class web page.

• E-mail list is used for posting announcements by instructor and TAs.

• It is your responsibility to subscribe. It might turn out to be very helpful for assignments hints, corrections etc.
Computer Lab

- Math Sciences Computer Center
 › http://www.ms.washington.edu/
- Project can be done in Java or C++
 › We ordered most of the texts in Java, but there should be some in C++.

Textbook

- Data Structures and Algorithm Analysis in Java (or in C++), by Weiss
- See Web page for errata and source code

Grading

- Dry assignments 20% - submit in singles
- Wet assignments (programming projects) 30% - can submit in pairs.
- Midterm 20%
 › Wednesday, Nov 5, 2003 (not definite yet)
- Final 30%
 › 8:30-10:20 a.m. Wednesday, Dec. 17, 2003

Class Overview

- Introduction to many of the basic data structures used in computer software
 › Understand the data structures
 › Analyze the algorithms that use them
 › Know when to apply them
- Practice design and analysis of data structures.
- Practice using these data structures by writing programs.
Goal

- You will understand
 › what the tools are for storing and processing common data types
 › which tools are appropriate for which need
- So that you will be able to
 › make good design choices as a developer, project manager, or system customer

Course Topics

- Introduction to Algorithm Analysis
- Lists, Stacks, Queues
- Search Algorithms and Trees
- Hashing and Heaps
- Sorting
- Disjoint Sets
- Graph Algorithms

Reading

- Chapters 1 and 2, Data Structures and Algorithm Analysis in Java, by Weiss
 › Most of Chapter 2 will be seen in class next week.

Data Structures: What?

- Need to organize program data according to problem being solved
- Abstract Data Type (ADT) - A data object and a set of operations for manipulating it
 › List ADT with operations `insert` and `delete`
 › Stack ADT with operations `push` and `pop`
- Note similarity to Java classes
 › private data structure and public methods
Data Structures: Why?

- Program design depends crucially on how data is structured for use by the program
 - Implementation of some operations may become easier or harder
 - Speed of program may dramatically decrease or increase
 - Memory used may increase or decrease
 - Debugging may be become easier or harder

Algorithm Analysis: Why?

- Correctness:
 - Does the algorithm do what is intended.
- Performance:
 - What is the running time of the algorithm.
 - How much storage does it consume.
- Different algorithms may correctly solve a given task
 - Which should I use?

Terminology

- Abstract Data Type (ADT)
 - Mathematical description of an object with set of operations on the object. Useful building block.
- Algorithm
 - A high level, language independent, description of a step-by-step process
- Data structure
 - A specific family of algorithms for implementing an abstract data type.
- Implementation of data structure
 - A specific implementation in a specific language

Evaluating an algorithm

Mike: My algorithm can sort 10^6 numbers in 3 seconds.
Bill: My algorithm can sort 10^6 numbers in 5 seconds.

Mike: I’ve just tested it on my new Pentium IV processor.
Bill: I remember my result from my undergraduate studies (1985).

Mike: My input is a random permutation of $1..10^6$.
Bill: My input is the sorted output, so I only need to verify that it is sorted.
Program Evaluation / Complexity

- Processing time is surely a bad measure!!!
- We need a ‘stable’ measure, independent of the implementation.

* A complexity function is a function $T: \mathbb{N} \rightarrow \mathbb{N}$.
 $T(n)$ is the number of operations the algorithm does on an input of size n.
* We can measure three different things.
 - Worst-case complexity
 - Best-case complexity
 - Average-case complexity

The RAM Model of Computation

- Each simple operation takes 1 time step.
- Loops and subroutines are not simple operations.
- Each memory access takes one time step, and there is no shortage of memory.

For a given problem instance:
- Running time of an algorithm = # RAM steps.
- Space used by an algorithm = # RAM memory cells

useful abstraction \Rightarrow allows us to analyze algorithms in a machine independent fashion.

Big O Notation

- Goal:
 - A stable measurement independent of the machine.
- Way:
 - Ignore constant factors.
 - $f(n) = O(g(n))$ if $c \cdot g(n)$ is upper bound on $f(n)$
 \Leftrightarrow There exist $c, N,$ s.t. for any $n \geq N$, $f(n) \leq c \cdot g(n)$

\[n + 120 \leq 5n^2 \]

\[\Rightarrow n + 120 = O(n^2) \]
Ω, Θ Notation

- \(f(n) = \Omega(g(n)) \) if \(c \cdot g(n) \) is lower bound on \(f(n) \)
 \(\iff \) There exist \(c, N \), s.t. for any \(n \geq N \), \(f(n) \geq c \cdot g(n) \)
- \(f(n) = \Theta(g(n)) \) if \(f(n) = O(g(n)) \) and \(f(n) = \Omega(g(n)) \)
 \(\iff \) There exist \(c_1, c_2, N \), s.t. for \(n \geq N \),
 \[c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n) \]

Examples:

- \(4x^2 + 100 = O(x^2) \) \(4x^2 + 100 \neq \Theta(x^3) \)
- \(4x^2 + 100 = \Omega(x^2) \) \(4x^2 + 100 = O(x^3) \)
- \(4x^2 + 100 = \Theta(x^2) \) \(4x^2 + 100 = \Omega(x) \)
- \(4x^2 - 100 = O(x^2) \) \(4x^2 + x \log x = O(x^2) \)
- \(123400 = O(1) \)

Growth Rates

- Even by ignoring constant factors, we can get an excellent idea of whether a given algorithm will be able to run in a reasonable amount of time on a problem of a given size.
- The “big O” notation and worst-case analysis are tools that greatly simplify our ability to compare the efficiency of algorithms.
Big O Fact

- A polynomial of degree k is $O(n^k)$
- Proof:
 - Suppose $f(n) = b_k n^k + b_{k-1} n^{k-1} + \ldots + b_1 n + b_0$
 - Let $a = \max_i \{b_i\}$
 - $f(n) \leq an^k + an^{k-1} + \ldots + an + a$
 - $\leq kan^k \leq cn^k$ (for $c=ka$).
Iterative Algorithm for Sum

• Find the sum of the first num integers stored in an array v.

```java
sum(v[ ]: integer array, num: integer): integer{
    temp_sum: integer;
    temp_sum := 0;
    for i = 0 to num - 1 do
        temp_sum := v[i] + temp_sum;
    return temp_sum;
}
```

Note the use of pseudocode

Programming via Recursion

• Write a recursive function to find the sum of the first num integers stored in array v.

```java
sum (v[ ]: integer array, num: integer): integer {
    if num = 0 then
        return 0
    else
        return v[num-1] + sum(v, num-1);
}
```

Pseudocode

• In the lectures algorithms will be presented in pseudocode.
 › This is very common in the computer science literature
 › Pseudocode is usually easily translated to real code.
 › This is programming language independent
• Pseudocode should also be used for homework (dry ones)

Review: Induction

• Suppose
 › S(k) is true for fixed constant k
 • Often k = 0
 › S(n) S(n+1) for all n >= k
• Then S(n) is true for all n >= k
Proof By Induction

• Claim: $S(n)$ is true for all $n \geq k$
• Base:
 › Show $S(n)$ is true for $n = k$
• Inductive hypothesis:
 › Assume $S(n)$ is true for an arbitrary n
• Step:
 › Show that $S(n)$ is then true for $n+1$

Induction Example: Geometric Closed Form

• Prove $a^0 + a^1 + \ldots + a^n = \frac{(a^{n+1} - 1)}{(a - 1)}$ for all $a \neq 1$
 › Basis: 1. show that $a^0 = \frac{(a^{0+1} - 1)}{(a - 1)}$:
 $a^0 = 1 = \frac{(a^1 - 1)}{(a - 1)}$. 2. Show true for $n=2$.
 › Inductive hypothesis:
 • Assume $a^0 + a^1 + \ldots + a^n = \frac{(a^{n+1} - 1)}{(a - 1)}$
 › Step (show true for n+1):
 $a^0 + a^1 + \ldots + a^{n+1} = a^0 + a^1 + \ldots + a^n + a^{n+1}$
 $= \frac{(a^{n+1} - 1)}{(a - 1)} + a^{n+1} = \frac{(a^{n+1} - 1)}{(a - 1)}$

Program Correctness by Induction

• **Basis Step**: $\text{sum}(v,0) = 0$.
• **Inductive Hypothesis (n=k)**: Assume $\text{sum}(v,k)$ correctly returns sum of first k elements of v, i.e. $v[0]+v[1]+\ldots+v[k-1]$
• **Inductive Step (n=k+1)**: $\text{sum}(v,n)$ returns $v[k]+\text{sum}(v,k)$ which is the sum of first $k+1$ elements of v.