The Need for Speed

- Data structures we have looked at so far
 - Use comparison operations to find items
 - Need $O(\log N)$ time for Find and Insert
- In real world applications, N is typically between 100 and 100,000 (or more)
 - $\log N$ is between 6.6 and 16.6
- Hash tables are an abstract data type designed for $O(1)$ Find and Inserts

Limited Set of Hash Operations

- For many applications, a limited set of operations is all that is needed
 - Insert, Find, and Delete
 - Note that no ordering of elements is implied
- For example, a compiler needs to maintain information about the symbols in a program
 - User defined
 - Language keywords

Fewer Functions Faster

- by reducing the flexibility of what we are allowed to do, we can increase the performance of the remaining operations
- compare trees and hash tables
 - Trees provide operations that are based on the order of the elements.
 - Hash tables just let you (quickly) find an element

Hashing

CSE 373
Data Structures
Unit 11

Reading: Chapter 5
Direct Address Tables

- Direct addressing using an array is very fast
- Assume
 - keys are integers in the set $U = \{0, 1, \ldots, m-1\}$
 - m is small
 - no two elements have the same key
- Then just store each element at the array location $array[key]$
 - search, insert, and delete are trivial – $O(1)$

Direct Access Table

- U (universe of keys)
- K (Actual keys)

Direct Address Implementation

```java
Delete(Table T, ElementType x)
    T[key[x]] = NULL //key[x] is an integer
```

```java
Insert(Table t, ElementType x)
    T[key[x]] = x
```

```java
Find(Table t, Key k)
    return T[k]
```

An Issue

- If most keys in U are used
 - direct addressing can work very well (m small)
- The largest possible key in U, say m, may be much larger than the number of elements actually stored ($|U|$ much greater than $|K|$)
 - the table is very sparse and wastes space
 - in worst case, table too large to have in memory
- If most keys in U are not used
 - need to map U to a smaller set closer in size to K
Mapping the Keys

Hash Function

Table indices

Hashing Schemes

- We want to store N items in a table of size M, at a location computed from the key K (which may not be numeric)
- Hash function
 - Method for computing table index from key
- Need of a collision resolution strategy
 - How to handle two keys that hash to the same index

“Find” an Element in an Array

- Data records can be stored in arrays.
 - A[0] = {“CHEM 110”, 89}
- Class size for CSE 373?
 - Linear search the array – O(N) worst case time
 - Binary search - O(log N) worst case

Go Directly to the Element

- What if we could directly index into the array using the key?
 - A[“CSE 373”] = {55}
- Main idea behind hash tables
 - Use a key based on some aspect of the data to index directly into an array
 - O(1) time to access records
Indexing into Hash Table

- Need a fast \textit{hash function} to convert the element key (string or number) to an integer (the \textit{hash value}) (i.e., map from U to index)
 - Then use this value to index into an array
 - \text{Hash(“CSE 373”) = 17, Hash(“CSE 143”) = 101}

- Output of the hash function
 - must always be less than size of array
 - should be as evenly distributed as possible

Choosing the Hash Function

- What properties do we want from a hash function?
 - Want universe of hash values to be distributed randomly to minimize collisions
 - Don’t want systematic nonrandom pattern in selection of keys to lead to systematic collisions

The Key Values are Important

- Notice that one issue with all the hash functions is that the actual content of the key set matters

- The elements in K (the keys that are used) are quite possibly a restricted subset of U, not just a random collection
 - variable names, words in the English language, reserved keywords, telephone numbers, etc, etc

Simple Hashes

- It's possible to have very simple hash functions if you are certain of your keys

- For example,
 - suppose we know that the keys s will be real numbers uniformly distributed over $0 \leq s < 1$
 - Then a very fast, very good hash function is
 - \textit{hash}(s) = \text{floor}(s \cdot m)
 - where m is the size of the table
Example of a Very Simple Mapping

- $\text{hash}(s) = \text{floor}(s \cdot m)$ maps from $0 \leq s < 1$ to $0..m-1$
 - $m = 10$

<table>
<thead>
<tr>
<th>s</th>
<th>0.0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>floor($s \cdot m$)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

We might have collisions (both 0.28 and 0.21 are mapped to 2), we will deal with them later.

Perfect Hashing

- In some cases it is possible to map a known set of keys uniquely to a set of index values
- You must know every single key beforehand and be able to derive a function that works one-to-one

$$\text{hash}(s) = s \mod 10$$

<table>
<thead>
<tr>
<th>s</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>hash(s)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Mod Hash Function

- One solution for a less constrained key set
 - modular arithmetic
- $a \mod \text{size}$
 - remainder when "a" is divided by "size"
 - in C or Java this is written as $r = a \% \text{size}$;
 - If TableSize = 251
 - 408 mod 251 = 157
 - 352 mod 251 = 101

Hashing Integers

- If keys are integers, we can use the hash function:
 - Hash(key) = key mod TableSize
- Problem 1: What if TableSize is 12 and all keys are $12k+2$? (e.g., 26, 38, 62, …)
 - all keys map to the same index
 - Need to pick TableSize carefully: a prime number is often a good choice.
Collisions

- A collision occurs when two different keys hash to the same value
 - E.g. For TableSize = 17, the keys 18 and 35 hash to the same value for the mod17 hash function
 - 18 mod 17 = 1 and 35 mod 17 = 1
- Cannot store both data records in the same slot in array!

Collision Resolution

- Separate Chaining
 - Use data structure (such as a linked list) to store multiple items that hash to the same slot
- Open addressing (or probing)
 - search for empty slots using a second function and store item in first empty slot that is found

Resolution by Chaining

- Each hash table cell holds pointer to linked list of records with same hash value
- Collision: Insert item into linked list
- To Find an item: compute hash value, then do Find on linked list
- Note that there are potentially as many as TableSize lists

Why Lists?

- Can use List ADT for Find/Insert/Delete in linked list
 - O(N) runtime where N is the number of elements in the particular chain
- Can also use Binary Search Trees
 - O(log N) time instead of O(N)
 - But the number of elements to search through should be small (otherwise the hashing function is bad or the table is too small)
 - generally not worth the overhead of BSTs
Load Factor of a Hash Table

- Let N = number of items to be stored
- Load factor $\lambda = \frac{N}{\text{TableSize}}$
 - TableSize = 101 and N = 505, then $\lambda = 5$
 - TableSize = 101 and N = 10, then $\lambda = 0.1$
- Average length of chained list = λ and so average time for accessing an item = $O(1) + O(\lambda)$
 - Want λ to be smaller than 1 but close to 1 if good hashing function (i.e. TableSize $\approx N$)
 - With chaining hashing continues to work for $\lambda > 1$

Resolution by Open Addressing

- No links, all keys are in the table
 - reduced overhead saves space
- When searching for x, check locations $h_1(x), h_2(x), h_3(x), \ldots$ until either
 - x is found; or
 - we find an empty location (x not present)
- Various flavors of open addressing differ in which probe sequence they use

Cell Full? Keep Looking.

- $h_1(x) = (\text{Hash}(x) + F(i)) \mod \text{TableSize}$
 - Define $F(0) = 0$
- F is the collision resolution function.
 - Some possibilities:
 - Linear: $F(i) = i$
 - Quadratic: $F(i) = i^2$
 - Double Hashing: $F(i) = i \cdot \text{Hash}_2(X)$

Linear Probing

- When searching for k, check locations $h(k), h(k)+1, h(k)+2, \ldots \mod \text{TableSize}$ until either
 - k is found; or
 - we find an empty location (k not present)
- If table is very sparse, we’ll probably find k quickly.
- When table starts filling, we get clustering but still constant average search time.
- Full table \Rightarrow infinite loop.
Primary Clustering Problem

- Once a block of a few contiguous occupied positions emerges in table, it becomes a “target” for subsequent collisions

- As clusters grow, they also merge to form larger clusters.

- Primary clustering: elements that hash to different cells probe same alternative cells

Quadratic Probing

- When searching for \(x \), check locations \(h_1(X), h_1(X) + 1^2, h_1(X) + 2^2, \ldots \) mod \(TableSize \) until either
 - \(x \) is found; or
 - we find an empty location (\(x \) not present)

- No primary clustering but secondary clustering possible

Double Hashing

- When searching for \(x \), check locations \(h_1(X), h_1(X) + h_2(X), h_1(X) + 2h_2(X), \ldots \) mod \(TableSize \) until either
 - \(x \) is found; or
 - we find an empty location (\(x \) not present)

- Must be careful about \(h_2(X) \)
 - Not 0 and not a divisor of \(m \)
 - e.g., \(h_1(k) = k \ mod \ m_1, \ h_2(k) = 1 + (k \ mod \ m_2) \)
 where \(m_2 \) is slightly less than \(m_1 \)

Rules of Thumb

- Separate chaining is simple but wastes space...

- Linear probing uses space better, is fast when tables are sparse

- Double hashing is space efficient, fast (get initial hash and increment at the same time), needs careful implementation
Rehashing – Rebuild the Table

- Need to use lazy deletion if we use probing (why?)
 › Need to mark array slots as deleted after Delete
 › consequently, deleting doesn’t make the table any less full than it was before the delete
- If table gets too full ($\lambda \approx 1$) or if many deletions have occurred, running time gets too long and Inserts may fail

Rehashing

- Build a bigger hash table of approximately twice the size when λ exceeds a particular value
 › Go through old hash table, ignoring items marked deleted
 › Recompute hash value for each non-deleted key and put the item in new position in new table
 › Cannot just copy data from old table because the bigger table has a new hash function
- Running time is $O(N)$ but happens very infrequently
 › Not good for real-time safety critical applications

Rehashing Example

- Open hashing $- h_1(x) = x \mod 5$ rehashes to $h_2(x) = x \mod 11$.

 \[
 \begin{array}{cccc}
 \lambda = 1 & 0 & 1 & 2 & 3 & 4 \\
 & 25 & 37 & 83 & 52 & 98 \\
 \end{array}
 \]

 \[
 \begin{array}{ccccccc}
 \lambda = 5/11 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
 & 25 & 37 & 83 & 52 & 98 & & & & & & \\
 \end{array}
 \]

 \[
 \begin{array}{cccc}
 \lambda = 1 & 0 & 1 & 2 & 3 & 4 & 5 \\
 & 25 & 37 & 83 & 52 & 98 & & & & & \\
 \end{array}
 \]

Nonnumerical Keys

- Many hash functions assume that the universe of keys is the natural numbers $\mathbb{N}=\{0,1,\ldots\}$
- Need to find a function to convert the actual key to a natural number quickly and effectively before or during the hash calculation
- Generally work with the ASCII character codes when converting strings to numbers
Characters to Integers

- If keys are strings we can get an integer by adding up ASCII values of characters in key
- We are converting a very large string \(c_0c_1c_2 \ldots c_n \) to a relatively small number \(c_0+c_1+c_2+\ldots+c_n \mod \text{size} \).

<table>
<thead>
<tr>
<th>Character</th>
<th>ASCII value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>67</td>
</tr>
<tr>
<td>S</td>
<td>83</td>
</tr>
<tr>
<td>E</td>
<td>69</td>
</tr>
<tr>
<td>3</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>51</td>
</tr>
<tr>
<td>3</td>
<td>55</td>
</tr>
<tr>
<td><0></td>
<td>0</td>
</tr>
</tbody>
</table>

Hash Must be Onto Table

- Problem 2: What if \(\text{TableSize} \) is 10,000 and all keys are 8 or less characters long?
 - chars have values between 0 and 127
 - Keys will hash only to positions 0 through \(8 \times 127 = 1016 \)
- Need to distribute keys over the entire table or the extra space is wasted

Problems with Adding Characters

- Problems with adding up character values for string keys
 - If string keys are short, will not hash evenly to all of the hash table
 - Different character combinations hash to same value
 - “abc”, “bca”, and “cab” all add up to the same value (recall this was Problem 1)

Characters as Integers

- A character string can be thought of as a base 256 number. The string \(c_1c_2\ldots c_n \) can be thought of as the number \(c_n + 256c_{n-1} + 256^2c_{n-2} + \ldots + 256^{n-1}c_1 \)
- Use Horner’s Rule to Hash! (see Ex. 2.14)

\[
r = 0;
for \ i = 1 \ to \ n \ do
 r := (c[i] + 256*r) \mod \text{TableSize}
\]
Caveats

• Hash functions are very often the cause of performance bugs.
• Hash functions often make the code not portable.
• If a particular hash function behaves badly on your data, then pick another.
• Always check where the time goes