What are graphs?

• Yes, this is a graph….

• But we are interested in a different kind of “graph”

Graphs

• Graphs are composed of
 › Nodes (vertices)
 › Edges (arcs)

Varieties

• Nodes
 › Labeled or unlabeled

• Edges
 › Directed or undirected
 › Labeled or unlabeled
Motivation for Graphs

• Consider the data structures we have looked at so far...
 - Linked list: nodes with 1 incoming edge + 1 outgoing edge
 - Binary trees/heaps: nodes with 1 incoming edge + 2 outgoing edges
 - B-trees: nodes with 1 incoming edge + multiple outgoing edges

Motivation for Graphs

• How can you generalize these data structures?
• Consider data structures for representing the following problems…

CSE Course Prerequisites at UW

Nodes = courses
Directed edge = prerequisite

Representing a Maze

Nodes = junctions
Edge = door or passage
Representing Electrical Circuits

Nodes = battery, switch, resistor, etc.
Edges = connections

Precedence

\[
\begin{align*}
S_1 & : a = 0; \\
S_2 & : b = 1; \\
S_3 & : c = a + 1 \\
S_4 & : d = b + a \\
S_5 & : e = d + 1 \\
S_6 & : e = c + d \\
\end{align*}
\]

Which statements must execute before \(S_6 \)?
\(S_1, S_2, S_3, S_4 \)

Nodes = statements
Edges = precedence requirements

Information Transmission in a Computer Network

Nodes = computers
Edges = transmission rates

Traffic Flow on Highways

Nodes = cities
Edges = # vehicles on connecting highway
Graph Definition

- A graph is simply a collection of nodes plus edges
 › Linked lists, trees, and heaps are all special cases of graphs
- The nodes are known as vertices (node = “vertex”)
- Formal Definition: A graph G is a pair (V, E) where
 › V is a set of vertices or nodes
 › E is a set of edges that connect vertices

Directed vs Undirected Graphs

- If the order of edge pairs (v_1, v_2) matters, the graph is directed (also called a digraph): $(v_1, v_2) \neq (v_2, v_1)$

Undirected Terminology

- Two vertices u and v are adjacent in an undirected graph G if $\{u,v\}$ is an edge in G
 › edge $e = \{u,v\}$ is incident with vertex u and vertex v
- The degree of a vertex in an undirected graph is the number of edges incident with it
 › a self-loop counts twice (both ends count)
 › denoted with $\text{deg}(v)$

Graph Example

- Here is a directed graph $G = (V, E)$
 › Each edge is a pair (v_1, v_2), where v_1, v_2 are vertices in V
 › $V = \{A, B, C, D, E, F\}$
 › $E = \{(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)\}$

Undirected Terminology

- Two vertices u and v are adjacent in an undirected graph G if $\{u,v\}$ is an edge in G
 › edge $e = \{u,v\}$ is incident with vertex u and vertex v
- The degree of a vertex in an undirected graph is the number of edges incident with it
 › a self-loop counts twice (both ends count)
 › denoted with $\text{deg}(v)$
Undirected Terminology

(A,B) is incident to A and to B
B is adjacent to C and C is adjacent to B
Degree = 3

Directed Terminology

• Vertex u is adjacent to vertex v in a directed graph G if (u,v) is an edge in G
 › vertex u is the initial vertex of (u,v)
• Vertex v is adjacent from vertex u
 › vertex v is the terminal (or end) vertex of (u,v)
• Degree
 › in-degree is the number of edges with the vertex as the terminal vertex
 › out-degree is the number of edges with the vertex as the initial vertex

Directed Terminology

B adjacent to C and C adjacent from B
In-degree = 2
Out-degree = 1

Handshaking Theorem

• Let G=(V,E) be an undirected graph with |E|=m edges. Then
 \[2m = \sum_{v \in V} \text{deg}(v) \]
• Proof: Every edge contributes +1 to the degree of each of the two vertices it is incident with
 › number of edges is exactly half the sum of \text{deg}(v)
 › the sum of the \text{deg}(v) values must be even
Graph Representations

- Space and time are analyzed in terms of:
 - Number of vertices, $n = |V|$ and
 - Number of edges, $m = |E|$
- There are at least two ways of representing graphs:
 - The adjacency matrix representation
 - The adjacency list representation

Adjacency Matrix

A B C D E F
0 1 0 1 0 0
A
B 0 1 0 0 0 0
C 0 0 1 1 0 0
D 0 0 0 1 0 0
E 0 0 0 0 0 0
F 0 0 0 0 0 0

$M(v, w) = \begin{cases} 1 & \text{if } (v, w) \text{ is in } E \\ 0 & \text{otherwise} \end{cases}$

Space = $|V|^2$

Adjacency Matrix for a Digraph

Adjacency List

For each v in V, $L(v) =$ list of w such that (v, w) is in E

Space = $a |V| + 2 b |E|$
Adjacency List for a Digraph

For each v in V, $L(v) =$ list of w such that (v, w) is in E

For each vertex v, the adjacency list $L(v)$ stores all the vertices w that are adjacent to v. The space required for this representation is $a |V| + b |E|$, where a and b are constants.

Trees

- An undirected graph is a tree if it is connected and contains no cycles.
- A directed graph is a directed tree if it has a root and its underlying undirected graph is a tree.
- $r \in V$ is a root if every vertex $v \in V$ is reachable from r; i.e., there is a directed path which starts in r and ends in v.

Alternative Definitions of Undirected Trees

- G is cycles-free, but if any new edge is added to G, a cycle is formed.
- for every pair of vertices u,v, there is a unique, simple path from u to v.
- G is connected, but if any edge is deleted from G, the connectivity of G is interrupted.
- G is connected and has $n−1$ edges.

G is a tree \Rightarrow G is cycle-free and has $n−1$ edges.

\Rightarrow We show, by induction on n, that if G is a tree (cycle-free and connected), then its number of edges is $n-1$.

Base: $n=1$

Step: Assume that it is true for all $n < m$, and let G be a tree with m vertices. Delete from G any edge e. By definition (3), G is not connected any more, and is broken into two connected components each of which is cycle-free and therefore is a tree. By the inductive hypothesis, each component has one edge less than the number of vertices. Thus, both have $m−2$ edges. Add back e, to get $m−1$.

25 26 27 28
Problem: Find an order in which all these courses can be taken.

Example: 142 143 378 370 321 341 322
326 421 401

In order to take a course, you must take all of its prerequisites first.

Given a digraph $G = (V, E)$, find a linear ordering of its vertices such that:
for any edge (v, w) in E, v precedes w in the ordering.

Note that F can go anywhere in this list because it is not connected. Also the solution is not unique.
Paths and Cycles

- Given a digraph $G = (V,E)$, a path is a sequence of vertices v_1, v_2, \ldots, v_k such that:
 - (v_i, v_{i+1}) in E for all $1 \leq i < k$
 - path length = number of edges in the path
 - path cost = sum of costs of participating edges
- A path is a cycle if:
 - $k > 1$ and $v_1 = v_k$
- G is acyclic if it has no cycles.

Only acyclic graphs can be topologically sorted

- A directed graph with a cycle cannot be topologically sorted.

![Graph with cycle](image)
There is no valid ordering of A,B,C,D

Topo sort algorithm - 1

Step 1: Identify vertices that have no incoming edges
 - The "in-degree" of these vertices is zero

Topo sort algorithm - 1a

Step 1: Identify vertices that have no incoming edges
 - If no such vertices, graph has only cycle(s)
 - Topological sort not possible – Halt.

Example of an ‘only-cycles’ graph
Topo sort algorithm - 1b

Step 1: Identify vertices that have no incoming edges
- Select one such vertex

![Diagram 1b](image1.png)

Topo sort algorithm - 2

Step 2: Delete this vertex of in-degree 0 and all its outgoing edges from the graph. Place it in the output.

![Diagram 2](image2.png)

Continue until done

Repeat Step 1 and Step 2 until graph is empty (or until HALT due to cycles-only').

![Diagram 3](image3.png)

Example (cont') - B

Select B. Copy to sorted list. Delete B and its edges.

![Diagram 4](image4.png)
Select C. Copy to sorted list. Delete C and its edges.

![Diagram of C]

Select D. Copy to sorted list. Delete D and its edges.

![Diagram of D]

Select E. Copy to sorted list. Delete E and its edges. Select F. Copy to sorted list. Delete F and its edges.

![Diagram of E, F]

Yes, we could select F earlier (in any step). The topological sort is not necessarily unique.

Done

![Diagram of Done]
Implementation

Assume adjacency list representation

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Translation array: 1 2 3 4 5 6

A B C D E F

Calculate In-degrees

Key idea: Initialize and maintain a queue (or stack) of vertices with In-Degree 0

```
for i = 1 to n do
    D[i] := 0; endfor
for i = 1 to n do
    x := A[i];
    while x ≠ null do
        D[x.value] := D[x.value] + 1;
        x := x.next;
    endwhile
endfor
```

Time Complexity? O(n+m).

Maintaining Degree 0 Vertices

Queue: 1 6

D

A
Topo Sort using a Queue (breadth-first)

After each vertex is output, when updating In-Degree array, enqueue any vertex whose In-Degree becomes zero

1. Store each vertex’s In-Degree in an array D
2. Initialize queue with all “in-degree=0” vertices
3. While there are vertices remaining in the queue:
 (a) Dequeue and output a vertex
 (b) Reduce In-Degree of all vertices adjacent to it by 1
 (c) Enqueue any of these vertices whose In-Degree became zero
4. If all vertices are output then success, otherwise there is a cycle.

Some Detail

Main Loop
while notEmpty(Q) do
 x := Dequeue(Q)
 Output(x)
 y := A[x];
 while y ≠ null do
 D[y.value] := D[y.value] - 1;
 if D[y.value] = 0 then Enqueue(Q,y.value);
 y := y.next;
 endwhile
endwhile

Time complexity? $O(\text{out}_\text{degree}(x))$.

Topological Sort Analysis

• Initialize In-Degree array: $O(|V| + |E|)$
• Initialize Queue with In-Degree 0 vertices: $O(|V|)$
• Dequeue and output vertex:
 • $|V|$ vertices, each takes only $O(1)$ to dequeue and output: $O(|V|)$
• Reduce In-Degree of all vertices adjacent to a vertex and Enqueue any In-Degree 0 vertices:
 • $O(|E|)$ (total out_degree of all vertices)
• For input graph $G=(V,E)$ run time $= O(|V| + |E|)$
 • Linear time!
Topo Sort using a Stack (depth-first)

After each vertex is output, when updating In-Degree array, push any vertex whose In-Degree becomes zero.