1. (12 points) Explain in at most two sentences what is wrong, if anything, with the following induction proof.

- Claim: All horses are the same color.
- Proof: We prove this by showing that any set of horses contains only horses of a single color; in particular, this is true for the set of all horses. Let \(H \) be an arbitrary set of horses. We show by induction on \(n \), the number of horses in \(H \), that all horses in \(H \) are the same color.
- Basis: The cases \(n = 0 \) and \(n = 1 \) are immediately seen to be true.
- Induction step: Consider any number \(n \) of horses in \(H \). Call these horses \(h_1, h_2, h_3, ..., h_n \). By the induction hypothesis, any set of \(n-1 \) horses contains only horses of a single color. Consider the set \(H_1 \) obtained by removing horse \(h_1 \) from \(H \), and the set \(H_2 \) obtained by removing horse \(h_2 \) from \(H \). There are \(n-1 \) horses in each of these sets, hence the induction hypothesis applies to each: \(H_1 \) has all horses of a single color (say, \(c_1 \)), and \(H_2 \) has all horses of a single color (say, \(c_2 \)). But, since horse \(h_n \) is common to both sets \(H_1 \) and \(H_2 \), the two colors \(c_1 \) and \(c_2 \) must be the same. This completes the induction step.

2. (24 points) True or False? Give a brief explanation.

- a. \(\sum_{k=1}^{n} k = O(n) \)
- b. \(\sum_{k=1}^{n} k = \Omega(n) \)
- c. \(2^n = \Theta(3^n) \)
- d. \(3n^2 + n + n \cdot \log(n) = \Omega(n^2) \)
- e. \(3n^2 + n + n \cdot \log(n) = \Omega(n \cdot \log(n)) \)
- f. \(\frac{n^2}{2^n} = O(1) \)
3. (20 points) For each of the following questions, briefly explain your answer.

 a. If I prove that an algorithm takes $O(n^2)$ worst-case time, is it possible that it takes $O(n)$ on some inputs?

 b. If I prove that an algorithm takes $O(n^2)$ worst-case time, is it possible that it takes $O(n)$ on all inputs?

 c. If I prove that an algorithm takes $\Theta(n^2)$ worst-case time, is it possible that it takes $O(n)$ on some inputs?

 d. If I prove that an algorithm takes $\Theta(n^2)$ worst-case time, is it possible that it takes $O(n)$ on all inputs?

4. (24 points) The sequence 0,1,3,5,11,21,43 is given by

 $S_0=0, S_1=1,

 S_k=S_{k-1}+2*S_{k-2}$ (k>1)

 Write (in pseudocode) a function that gets as input a sorted array a[] and its length n and returns the maximal index k such that all the numbers S_0,S_1,\ldots,S_k appear in a[] (or -1 if such an index does not exist).

 The time complexity of your function should be $O(n)$. The space complexity should be $O(1)$.

 Examples: For a={0,1,1,2,3,4,5,11,15,17,21,56,67} the returned value should be 6 (S_0, S_1,\ldots, S_6 are in the array).

 For a={-5, -2, 0, 1, 1, 1, 2, 3, 3, 4, 5} the returned value should be 4

 For a={-8,1,2,3,4,5} the returned value should be -1

5. (20 points) Write (in pseudocode) a recursive function ‘MaxPair’ that gets an array a[] of integers and its size n (it is known that n>1), and returns the maximal sum of two consecutive elements in a[] (that is Max(a[j-1]+a[j]: 1 \leq j \leq n -1). You are not allowed to use loops in your solution.

 What is the time and space complexity?