Graphs
Minimum Spanning Trees

CSE 373 - Data Structures
May 29, 2002
Readings and References

• Reading
 › Section 9.5, *Data Structures and Algorithm Analysis in C*, Weiss

• Other References
Breadth First Search (BFS)

• We used Breadth First Search for finding shortest paths in an unweighted graph
 › Use a queue to explore neighbors of source vertex, neighbors of each neighbor, and so on: 1 edge away, two edges away, etc.

• BFS spreads out like ripples in a pond
 › all nodes at a given distance are looked at before we go any further outward
Breadth-First Search

- **Basic Idea**: Starting at node s, find vertices that can be reached using 0, 1, 2, 3, ..., N-1 edges
Breadth-First Search Algorithm

- Uses a queue to track vertices that are “nearby”
- source vertex is s

 \[
 \text{Distance}[s] = 0
 \]

 Enqueue(s)

 While queue is not empty

 $X = \text{dequeue a vertex}$

 For each vertex Y that is (adjacent to X and not previously visited)

 \[
 \text{Distance}[Y] = \text{Distance}[X] + 1
 \]

 Previous[Y] = X

 Enqueue Y

- Running time (same as topological sort) = $O(|V| + |E|)$
Breadth-First Search

- **BFS(C)**: Starting at node C, find vertices that can be reached using 0, 1, 2, 3, …, N-1 edges
Depth First Search (DFS)

• A second way to explore all nodes in a graph
• DFS searches down one path as deep as possible
 › When no new nodes available, it *backtracks*
 › When backtracking, we explore side-paths that weren’t taken
• DFS allows an easy recursive implementation
 › So, DFS uses a stack while BFS uses a queue
DFS Pseudocode

- Pseudocode for DFS:

  ```
  DFS(v)
  If v is unvisited
      mark v as visited
      print v (or process v)
      for each edge (v, w)
          DFS(w)
  ```

- Works for directed or undirected graphs

- Running time = \(O(|V| + |E|) \)
Depth-First Search

- **DFS(C)**: searches down one path as deeply as possible, then backtracks and does it again

![Diagram of Depth-First Search](image)
What about DFS on this graph?

- What happens when you do DFS("142")?

Go as deep as possible,
Then backtrack…
We get a “spanning” tree…
DFS and BFS may give different trees…
Spanning Tree Definition

- **Spanning tree**: a subset of edges from a connected graph that:
 - touches all vertices in the graph (*spans* the graph)
 - forms a tree (is connected and contains no cycles)

- **Minimum spanning tree**: the spanning tree with the least total edge cost
Minimum Spanning Tree (MST)

We are given a weighted, undirected graph $G = (V, E)$, with weight function $w: E \rightarrow \mathbb{R}$ mapping edges to real valued weights.

Problem: Find the minimum cost spanning tree.
Why minimum spanning trees?

- Lots of applications
- Minimize length of gas pipelines between cities
- Find cheapest way to wire a house (with minimum cable)
- Find a way to connect various routers on a network that minimizes total delay
- Etc…
Finding Min Spanning Trees

• For any spanning tree T, inserting an edge e_{new} not in T creates a cycle
 › Removing any edge e_{old} from the cycle gives back a spanning tree
 › If inserted edge e_{new} has a lower cost than removed edge e_{old}, we get a lower cost spanning tree
• Create a spanning tree as follows:
 › Add an edge of minimum cost that doesn’t create a cycle
 › Repeat for $|V|-1$ edges
• Resulting spanning tree has **minimum cost**:
 › if you could replace an edge with another edge of lower cost without creating a cycle, our algorithm would have picked it
Min Spanning Tree Algorithms

- **Prim**
 - pick lowest cost edge *connected to known spanning tree* that doesn’t create a cycle and expand to include it in the tree

- **Kruskal**
 - pick lowest cost edge *not yet in a tree* that doesn’t create a cycle and expand to include it somewhere in the forest
Prim’s Algorithm for Finding the MST

- Starting from an empty tree, T, pick a vertex, v_0, at random and initialize: $S = \{v_0\}$ and $E = \{\}$
- Choose the vertex v not in S such that edge weight from v to a vertex in S is minimal (get greedy!)
- Add v to S and the edge to E if no cycle is created
- Repeat until all vertices have been added
Prim’s Algorithm for Finding the MST

- Starting from an empty tree, T, pick a vertex, v_0, at random and initialize:
 $S = \{v_0\}$ and $E = \{\}$
Prim’s Algorithm for Finding the MST

- Starting from an empty tree, T, pick a vertex, v_0, at random and initialize:
 $S = \{v_0\}$ and $E = \{\}$
- Choose the vertex v not in S such that edge weight from v to a vertex in S is minimal (greedy algo)
Prim’s Algorithm for Finding the MST

- Starting from an empty tree, T, pick a vertex, v_0, at random and initialize: $S = \{v_0\}$ and $E = \{}$
- Choose the vertex v not in S such that edge weight from v to a vertex in S is minimal
- Add v to S and the edge to E if no cycle is created
Prim’s Algorithm for Finding the MST

- Starting from an empty tree, T, pick a vertex, v_0, at random and initialize: $S = \{v_0\}$ and $E = \{\}$
- Choose the vertex v not in S such that edge weight from v to a vertex in S is minimal
- Add v to S and the edge to E if no cycle is created
- Repeat until all vertices have been added
Prim’s Algorithm for Finding the MST

- Starting from an empty tree, T, pick a vertex, v_0, at random and initialize: $S = \{v_0\}$ and $E = \{}$
- Choose the vertex v not in S such that edge weight from v to a vertex in S is minimal
- Add v to S and the edge to E if no cycle is created
- Repeat until all vertices have been added
Prim’s Algorithm for Finding the MST

- Starting from an empty tree, T, pick a vertex, v_0, at random and initialize: $S = \{v_0\}$ and $E = \{\}$
- Choose the vertex v not in S such that edge weight from v to a vertex in S is minimal
- Add v to S and the edge to E if no cycle is created
- Repeat until all vertices have been added
Prim’s Algorithm for Finding the MST

- Starting from an empty tree, T, pick a vertex, v_0, at random and initialize: $S = \{v_0\}$ and $E = \{\}$
- Choose the vertex v not in S such that edge weight from v to a vertex in S is minimal
- Add v to S and the edge to E if no cycle is created
- Repeat until all vertices have been added
Prim’s Algorithm for Finding the MST

Done!
Total cost = 1 + 3 + 4 + 1 + 1
= 10
Prim’s Algorithm Analysis

Initialize connection cost of each node to ∞ and mark it unknown
Initialize connection cost of one selected node S to 0, with $\text{Prev}[S] = 0$

While there are unknown nodes left in the graph
 Select the unknown node N with the lowest connection cost
 Mark N as known
 For each unknown node A adjacent to N
 If cost of $(N, A) < A’s$ cost
 $A’s$ cost = cost of (N, A)
 $\text{Prev}[A] = N$ //store preceding node

• This is almost identical to Dijkstra’s algorithm
• Run time is $O(|V|^2)$ without heaps and $O(|V| \log |V| + |E| \log |V|)$ using binary heaps
Kruskal’s Algorithm for Finding the MST

Select edges in order of increasing cost and accept an edge only if it does not cause a cycle

Put all the vertices into single node trees by themselves
Put all the edges in a priority queue with key = edge cost
Repeat until |V|−1 edges have been accepted {
 Extract cheapest edge from priority queue
 If it forms a cycle
 ignore it
 else
 accept the edge – it will join two existing trees yielding a larger tree and reducing the forest by one tree
}
Return the accepted edges (they form the spanning tree)
Reducing the forest to a single tree

- Initially, there are n different single vertex trees that partition the set of vertices.
- After you have added some edges, you have fewer (but larger) trees, which together still partition the set of vertices.
Detecting Cycles

• **When do you get a cycle?** If you add an edge \((u,v)\) where both \(u\) and \(v\) are already in the same tree \(T_i\), you get a cycle
 › Therefore, to check for cycles, you only need to find out if \(u\) and \(v\) are in the same tree
 › If not, then the edge can be added and we union vertices in \(u\)’s tree with vertices in \(v\)’s tree

• **What is your favorite data structure for such operations?**
Kruskal’s use of Disjoint Set ADT

- In Kruskal’s algorithm, connected vertices form equivalence classes
 - each tree is a set of connected vertices
 - *being connected* is the equivalence relation
- Initially, each vertex is in a class by itself
- As edges are added, more vertices become related and the equivalence classes grow in size and are reduced in number
- Until finally all the vertices are in a single equivalence class
Kruskal’s use of Disjoint Set ADT

- Detecting cycles is easy!
- For each edge \((u,v)\) that you’re thinking about adding
 - If \(\text{Find}(u) == \text{Find}(v)\), then \(u\) and \(v\) are in the same class (same tree) and therefore the edge will form a cycle, so reject it
 - Otherwise, we accept the edge and do \(\text{Union}(u,v)\), thereby indicating that all of the elements in the two trees are now in the same tree
Kruskal initialized

All the vertices are in a forest of single element trees.
All the vertices are in a set of single element equivalence classes.

\[V = \{\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g\}, \{h\}, \{i\}\} \]
Kruskal in action

The cheapest edge is h-g

Join h and g into a 2-element tree.

\[V = \{\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g,h\}, \{i\}\} \]
Kruskal in action

The next cheapest edge is c-i

Join c and i into a 2-element tree

V = \{\{a\}, \{b\}, \{c, i\}, \{d\}, \{e\}, \{f\}, \{g, h\}\}
The next cheapest edge is g-f

Join g tree and f into a 3-element tree

V = \{\{a\}, \{b\}, \{c, i\}, \{d\}, \{e\}, \{g, f, h\}\}
Kruskal in action

The next cheapest edge is a-b

Join a and b into a 2-element tree

\[V = \{\{a,b\}, \{c,i\}, \{d\}, \{e\}, \{g,f,h\}\} \]
Kruskal in action

The next cheapest edge is c-f

Join c and f trees into one 5-element tree

\[V = \{\{a,b\},\{c,f,g,h,i\},\{d\},\{e\}\} \]
The next cheapest edge is $g-i$

$\text{Find}(g)$ is c
$\text{Find}(i)$ is also c

g-i forms a cycle. Ignore this edge.

$V = \{\{a,b\}, \{c,f,g,h,i\}, \{d\}, \{e\}\}$
The next cheapest edge is c-d

Join c tree and d into one 6-element tree

V = \{\{a,b\}, \{c,d,f,g,h,i\}, \{e\}\}
The next cheapest edge is h-i

Find(h) is c
Find(i) is c

h-i forms a cycle. Ignore this edge.

V = \{\{a, b\}, \{c, d, f, g, h, i\}, \{e\}\}
Kruskal in action

The next cheapest edge is a-h

Join a and h trees into one tree

\[V = \{\{a, b, c, d, f, g, h, i\}, \{e\}\} \]
The next cheapest edge is b-c

Find(b) is c
Find(c) is c

b-c forms a cycle. Ignore this edge.

The next cheapest edge is d-e

Join c tree and e into one tree

V = {{a,b,c,d,e,f,g,h,i}}
Kruskal’s Algorithm for Finding the MST

Select edges in order of increasing cost and accept an edge only if it does not cause a cycle

Put all the vertices into single node trees by themselves \(O(|V|) \)
Put all the edges in a priority queue with key = edge cost \(O(|E|) \)
Repeat until \(|V|-1 \) edges have been accepted {
 Extract cheapest edge from priority queue \(O(|E|) \)
 If it forms a cycle
 ignore it \(O(\log |E|) \)
 else
 accept the edge – it will join two existing trees yielding a larger tree and reducing the forest by one tree
 }
Return the accepted edges (they form the spanning tree)

total worst case running time is \(O(|E| \cdot \log |E|) \)
Kruskal versus Prim

- **Worst case running time**
 - Prim: $O(|V| \log |V| + |E| \log |V|)$
 - Kruskal: $O(|E| \log |E|) = O(|E| \log |V|)$ since $|E| = O(|V|^2)$

- **Kruskal usually runs much faster than $O(|E| \log |V|)$ in practice**
 - Not all edges need to be DeleteMin-ed typically
 - The required $|V|-1$ edges are usually found quickly
 - So, Kruskal tends to be faster than Prim