Graphs
Minimum Spanning Trees
CSE 373 - Data Structures
May 29, 2002

Breadth First Search (BFS)

- We used Breadth First Search for finding shortest paths in an unweighted graph
 - Use a queue to explore neighbors of source vertex, neighbors of each neighbor, and so on: 1 edge away, two edges away, etc.
- BFS spreads out like ripples in a pond
 - all nodes at a given distance are looked at before we go any further outward

Breadth-First Search

- Basic Idea: Starting at node s, find vertices that can be reached using 0, 1, 2, 3, ..., N-1 edges

Readings and References

- Reading
 - Section 9.5, Data Structures and Algorithm Analysis in C, Weiss

- Other References
Breadth-First Search Algorithm

- Uses a queue to track vertices that are “nearby”
- Source vertex is s

  ```
  \text{Distance}[s] = 0
  \text{Enqueue}(s)
  
  While queue is not empty
  \quad X = \text{dequeue a vertex}
  \quad For each vertex Y that is (adjacent to X and not previously visited)
  \quad \quad \text{Distance}[Y] = \text{Distance}[X] + 1
  \quad \quad \text{Previous}[Y] = X
  \quad \quad \text{Enqueue Y}
  ```

- Running time (same as topological sort) = $O(|V| + |E|)$

Depth First Search (DFS)

- A second way to explore all nodes in a graph
- DFS searches down one path as deep as possible
 - When no new nodes available, it backtracks
 - When backtracking, we explore side-paths that weren’t taken
- DFS allows an easy recursive implementation
 - So, DFS uses a stack while BFS uses a queue

DFS Pseudocode

Pseudocode for DFS:

```pseudocode
DFS(v)
If v is unvisited
  mark v as visited
  print v (or process v)
  for each edge (v, w)
    DFS(w)
```

- Works for directed or undirected graphs
- Running time = $O(|V| + |E|)$

Breadth-First Search

- BFS(C): Starting at node C, find vertices that can be reached using 0, 1, 2, 3, …, N-1 edges

![BFS Diagram]

Running time (same as topological sort) = $O(|V| + |E|)$
Depth-First Search

- **DFS(C):** searches down one path as deeply as possible, then backtracks and does it again

What about DFS on this graph?

- What happens when you do DFS(“142”)?

We get a “spanning” tree...

DFS and BFS may give different trees...
Spanning Tree Definition

- **Spanning tree**: a subset of edges from a connected graph that:
 - touches all vertices in the graph (*spans* the graph)
 - forms a tree (is connected and contains no cycles)

- **Minimum spanning tree**: the spanning tree with the least total edge cost

Minimum Spanning Tree (MST)

We are given a weighted, undirected graph \(G = (V, E) \), with weight function \(w: E \rightarrow \mathbb{R} \) mapping edges to real valued weights

Problem: Find the minimum cost spanning tree

Why minimum spanning trees?

- Lots of applications
- Minimize length of gas pipelines between cities
- Find cheapest way to wire a house (with minimum cable)
- Find a way to connect various routers on a network that minimizes total delay
- Etc…

Finding Min Spanning Trees

- For any spanning tree \(T \), inserting an edge \(e_{new} \) not in \(T \) creates a cycle
 - Removing any edge \(e_{old} \) from the cycle gives back a spanning tree
 - If inserted edge \(e_{new} \) has a lower cost than removed edge \(e_{old} \), we get a lower cost spanning tree
- Create a spanning tree as follows:
 - Add an edge of minimum cost that doesn’t create a cycle
 - Repeat for \(|V| - 1\) edges
- Resulting spanning tree has minimum cost:
 - if you could replace an edge with another edge of lower cost without creating a cycle, our algorithm would have picked it
Min Spanning Tree Algorithms

- **Prim**
 - pick lowest cost edge *connected to known spanning tree* that doesn’t create a cycle and expand to include it in the tree
- **Kruskal**
 - pick lowest cost edge *not yet in a tree* that doesn’t create a cycle and expand to include it somewhere in the forest

Prim’s Algorithm for Finding the MST

- Starting from an empty tree, T, pick a vertex, v_0, at random and initialize: $S = \{v_0\}$ and $E = \{\}$
- Choose the vertex v not in S such that *edge weight from v to a vertex in S is minimal* (get greedy!)
- Add v to S and the edge to E if no cycle is created
- Repeat until all vertices have been added
Prim’s Algorithm for Finding the MST

- Starting from an empty tree, \(T \), pick a vertex, \(v_0 \), at random and initialize:
 \(S = \{ v_0 \} \) and \(E = \{ \} \)
- Choose the vertex \(v \) not in \(S \) such that edge weight from \(v \) to a vertex in \(S \) is minimal
- Add \(v \) to \(S \) and the edge to \(E \) if no cycle is created

Repeat until all vertices have been added
Prim’s Algorithm for Finding the MST

- Starting from an empty tree, T, pick a vertex, v_0, at random and initialize: $S = \{v_0\}$ and $E = \{}$
- Choose the vertex v not in S such that edge weight from v to a vertex in S is minimal
- Add v to S and the edge to E if no cycle is created
- Repeat until all vertices have been added

Done!
Total cost = $1 + 3 + 4 + 1 + 1$
$= 10$

Prim’s Algorithm Analysis

- This is almost identical to Dijkstra’s algorithm
- Run time is $O(|V|^2)$ without heaps and $O(|V| \log |V| + |E| \log |V|)$ using binary heaps

Kruskal’s Algorithm for Finding the MST

Select edges in order of increasing cost and accept an edge only if it does not cause a cycle

Put all the vertices into single node trees by themselves
Put all the edges in a priority queue with key = edge cost
Repeat until $|V|-1$ edges have been accepted {
 Extract cheapest edge from priority queue
 If it forms a cycle
 ignore it
 else
 accept the edge – it will join two existing trees yielding a larger tree and reducing the forest by one tree
} Return the accepted edges (they form the spanning tree)
Reducing the forest to a single tree

• Initially, there are \(n \) different single vertex trees that partition the set of vertices
• After you have added some edges, you have fewer (but larger) trees, which together still partition the set of vertices

Detecting Cycles

• When do you get a cycle? If you add an edge \((u,v)\) where both \(u \) and \(v \) are already in the same tree \(T_i \), you get a cycle
 › Therefore, to check for cycles, you only need to find out if \(u \) and \(v \) are in the same tree
 › If not, then the edge can be added and we union vertices in \(u \)’s tree with vertices in \(v \)’s tree
• What is your favorite data structure for such operations?

Kruskal’s use of Disjoint Set ADT

• In Kruskal’s algorithm, connected vertices form equivalence classes
 › each tree is a set of connected vertices
 › \textit{being connected} is the equivalence relation
• Initially, each vertex is in a class by itself
• As edges are added, more vertices become related and the equivalence classes grow in size and are reduced in number
• Until finally all the vertices are in a single equivalence class

Detecting cycles is easy!
• For each edge \((u,v)\) that you’re thinking about adding
 › If \(\text{Find}(u) == \text{Find}(v) \), then \(u \) and \(v \) are in the same class (same tree) and therefore the edge will form a cycle, so reject it
 › Otherwise, we accept the edge and do \(\text{Union}(u,v) \), thereby indicating that all of the elements in the two trees are now in the same tree
Kruskal initialized

All the vertices are in a forest of single element trees.
All the vertices are in a set of single element equivalence classes.

$V = \{\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g\}, \{h\}, \{i\}\}$

Kruskal in action

The cheapest edge is h-g

Join h and g into a 2-element tree.

$V = \{\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g, h\}, \{i\}\}$

Kruskal in action

The next cheapest edge is c-i

Join c and i into a 2-element tree

$V = \{\{a\}, \{b\}, \{c, i\}, \{d\}, \{e\}, \{f\}, \{g, h\}\}$

Kruskal in action

The next cheapest edge is g-f

Join g tree and f into a 3-element tree

$V = \{\{a\}, \{b\}, \{c, i\}, \{d\}, \{e\}, \{g, f, h\}\}$
Kruskal in action

The next cheapest edge is a-b

Join a and b into a 2-element tree

V = \{\{a,b\},\{c,i\},\{d\},\{e\},\{g,f,h\}\}

Kruskal in action

The next cheapest edge is c-f

Join c and f trees into one 5-element tree

V = \{\{a,b\},\{c,f,g,h,i\},\{d\},\{e\}\}

Kruskal in action

The next cheapest edge is g-i

Find(g) is c
Find(i) is also c

g-i forms a cycle. Ignore this edge.

V = \{\{a,b\},\{c,f,g,h,i\},\{d\},\{e\}\}

Kruskal in action

The next cheapest edge is c-d

Join c tree and d into one 6-element tree

V = \{\{a,b\},\{c,d,f,g,h,i\},\{e\}\}
Kruskal in action

The next cheapest edge is h-i

Find(h) is c
Find(i) is c

h-i forms a cycle. Ignore this edge.

V = {{a,b},{c,d,f,g,h,i},{e}}

Kruskal in action

The next cheapest edge is a-h

Join a and h trees into one tree

Kruskal done!

The next cheapest edge is b-c
The next cheapest edge is d-e

Find(b) is c
Find(c) is c

b-c forms a cycle. Ignore this edge.

Join c tree and e into one tree

V = {{a,b,c,d,e,f,g,h,i}}

Kruskal’s Algorithm for Finding the MST

Select edges in order of increasing cost and accept an edge only if it does not cause a cycle

Put all the vertices into single node trees by themselves \(O(V)\)
Put all the edges in a priority queue with key = edge cost \(O(E)\)
Repeat until \(|V|-1\) edges have been accepted {
Extract cheapest edge from priority queue \(O(E)\)
If it forms a cycle
ignore it
else
accept the edge – it will join two existing trees yielding a larger tree and reducing the forest by one tree
}
Return the accepted edges (they form the spanning tree)

\[O(E \cdot \log E) \]

Worst case requires \(|E|\) DeleteMin operations

total worst case running time is \(O(|E| \log |E|)\)
Kruskal versus Prim

- Worst case running time
 - Prim: $O(|V| \log |V| + |E| \log |V|)$
 - Kruskal: $O(|E| \log |E|) = O(|E| \log |V|)$ since $|E| = O(|V|^2)$
- Kruskal usually runs much faster than $O(|E| \log |V|)$ in practice
 - Not all edges need to be DeleteMin-ed typically
 - The required $|V|-1$ edges are usually found quickly
 - So, Kruskal tends to be faster than Prim