Graph Paths

CSE 373 - Data Structures
May 24, 2002

Readings and References

• Reading
 › Section 9.3, Data Structures and Algorithm Analysis in C, Weiss

• Other References

Some slides based on: CSE 326 by S. Wolfman, 2000

Path

• A path is a list of vertices \(\{v_1, v_2, \ldots, v_n\} \) such that \((v_i, v_{i+1}) \in E\) for all \(0 \leq i < n\).

Simple Paths and Cycles

• A simple path repeats no vertices
 › eg: \{Seattle, Salt Lake City, San Francisco\}

• A cycle is a path that starts and ends at the same vertex:
 › \{Seattle, Salt Lake City, San Francisco, Seattle\}

• A simple cycle is a cycle that repeats no vertices and the first vertex is also the last

• A directed acyclic graph (DAG) is a directed graph with no cycles
Connected

- G is connected if there is a path between every pair of distinct vertices in the graph
- A graph which is not connected is the union of two or more connected subgraphs
 - the subgraphs partition the graph G
 - the subgraphs are the connected components of G
 - note that the connected components are not connected to each other, but are themselves connected graphs

Undirected Connected Graph

Connected Components of G

Path cost and Path length

- **Path cost**: the sum of the costs of each edge
- **Path length**: the number of edges in the path
 - Path length is the unweighted path cost (each edge = 1)
Shortest Path Problems

- Given a graph $G = (V, E)$ and a “source” vertex s in V, find the minimum cost paths from s to every vertex in V.
- **Many variations**:
 - unweighted vs. weighted
 - cyclic vs. acyclic
 - pos. weights only vs. pos. and neg. weights
 - etc

Why study shortest path problems?

- Traveling on a budget: What is the cheapest airline schedule from Seattle to city X?
- Optimizing routing of packets on the internet:
 - Vertices are routers and edges are network links with different delays. What is the routing path with smallest total delay?
- Shipping: Find which highways and roads to take to minimize total delay due to traffic

Unweighted Shortest Path Problem

Problem: Given a “source” vertex s in an unweighted graph $G = (V,E)$, find the shortest path from s to all vertices in G.

Breadth-First Search Solution

- **Basic Idea**: Starting at node s, find vertices that can be reached using $0, 1, 2, 3, \ldots, N-1$ edges (works even for cyclic graphs!)
Breadth-First Search Algorithm

- Uses a queue to track vertices that are “nearby”
- source vertex is \(s \)

\[
\begin{align*}
\text{Distance}[s] &= 0 \\
\text{Enqueue}(s)
\end{align*}
\]

While queue is not empty

\[
\begin{align*}
&\text{X} = \text{dequeue a vertex} \\
&\text{For each vertex} \ Y \text{ that is (adjacent to} \ X \text{ and not previously visited)} \\
&\quad \text{Distance}[Y] = \text{Distance}[X] + 1 \\
&\quad \text{Previous}[Y] = X \\
&\text{Enqueue} \ Y
\end{align*}
\]

- Running time (same as topological sort) = \(O(|V| + |E|) \)

What if edges have weights?

- Breadth First Search does not work anymore
 - minimum cost path may have more edges than minimum length path

![Diagram of graph with vertices A, B, C, D, E, F, G, H and edges with weights]

Shortest path from C to A:
\(C \rightarrow A \) (cost = 9)

Minimum Cost Path = \(C \rightarrow E \rightarrow D \rightarrow A \) (cost = 8)

Dijkstra’s Algorithm for Weighted Shortest Path

- Classic algorithm for solving shortest path in weighted graphs (without negative weights)
- A greedy algorithm (irrevocably makes decisions without considering future consequences)
- Each vertex has a cost for path from initial vertex
- Greedy choice – always expand to the least cost vertex
 - a vertex already visited may be updated if a better path to it is found before it is added to the distinguished set

Dijkstra’s Shortest Path Algorithm

- Initialize the cost of initial node to 0, and all the rest of the nodes to \(\infty \)
- Initialize set \(S \) to be \(\emptyset \)
- While there are nodes left in the graph but not in \(S \)
 - Select the node \(K \) with the lowest cost that is not in \(S \) and identify the node as now being in \(S \)
 - for each node \(A \) adjacent to \(K \)
 - if \(\text{cost}(K) + \text{cost}(K, A) < A \)’s currently known cost
 - set \(\text{cost}(A) = \text{cost}(K) + \text{cost}(K, A) \)
 - set \(\text{previous}(A) = K \) so that we can remember the path
A weighted directed graph

Dijkstra example

Analysis of Dijkstra’s Algorithm

While there are nodes left in the graph but not in S
Select the node K with the lowest cost that is not in S and
identify the node as now being in S
for each node A adjacent to K
if (cost(K)+cost(K,A) < A’s currently known cost
set cost(A) = cost(K)+cost(K,A)
set previous(A) = K so that we can remember the path

Total time = |V| (O(|V|)) +O(|E|) = O(|V|^2 + |E|)
Dense graph: |E| = Θ(|V|^2) \rightarrow \text{Total time} = O(|V|^2) = O(|E|)
Sparse graph: |E| = Θ(|V|) \rightarrow \text{Total time} = O(|V|^2) = O(|E|^2)

Quadratic! Can we do better?

Analysis of Dijkstra’s Algorithm

Yes! Use a priority queue to store vertices with key = cost

|V| times:
Select the unknown node N with the lowest cost

|E| times:
deleteMin
A’s cost = N’s cost + cost of (N, A)
decreaseKey

Total run time = O(|V| \log |V| + |E| \log |V|)
Does It Always Work?

- Dijkstra’s algorithm is an example of a greedy algorithm
- Greedy algorithms always make choices that currently seem the best
 - Short-sighted – no consideration of long-term or global issues
 - Locally optimal does not always mean globally optimal
- In Dijkstra’s case – choose the least cost node, but what if there is another path through other vertices that is cheaper?

“Cloudy” Proof

If the path to G is the next shortest path, the path to P must be at least as long. Note - no negative path weights!
Therefore, any path through P to G cannot be shorter!

Inside the Cloud (Proof)

Everything inside the cloud has the correct shortest path
Proof is by induction on the # of nodes in the cloud:
 - Base case: Initial cloud is just the source with shortest path 0
 - Inductive hypothesis: cloud of k-1 nodes all have shortest paths
 - Inductive step: choose the least cost node G has to be the shortest path to G (previous slide). Add kth node G to the cloud