Topological Sort of a Graph

CSE 373 - Data Structures
May 24, 2002
Readings and References

• Reading
 › Section 9.2, *Data Structures and Algorithm Analysis in C*, Weiss

• Other References

Some slides based on: CSE 326 by S. Wolfman, 2000
Problem: Find an order in which all these courses can be taken.

Example: 142 → 143 → 378 → 370 → 321 → 341 → 322 → 326 → 421 → 401

In order to take a course, you must take all of its prerequisites first.
Topological Sort

Given a digraph $G = (V, E)$, find a linear ordering of its vertices such that:

for any edge (v, w) in E, v precedes w in the ordering
Topo sort - good example

Any linear ordering in which all the arrows go to the right is a valid solution

Note that F can go anywhere in this list because it is not connected.
Topo sort - bad example

Any linear ordering in which an arrow goes to the left is not a valid solution

NO!
Step 1: Identify vertices that have no incoming edges
- The “in-degree” of these vertices is zero
Step 1: Identify vertices that have no incoming edges

- If no such vertices, graph has cycle(s) (cyclic graph)
- Topological sort not possible – Halt.

Example of a cyclic graph
Step 1: Identify vertices that have no incoming edges

- Select one such vertex

Select

Topo sort algorithm - 1b
Step 2: Delete this vertex of in-degree 0 and all its outgoing edges from the graph. Place it in the output.
Cook until done

Repeat Step 1 and Step 2 until graph is empty

Select

[Diagram of a directed graph with nodes B, C, D, E, F, and A, showing the direction of edges.]
Select B. Copy to sorted list. Delete B and its edges.
Select C. Copy to sorted list. Delete C and its edges.
Select D. Copy to sorted list. Delete D and its edges.
Select E. Copy to sorted list. Delete E and its edges.
Select F. Copy to sorted list. Delete F and its edges.
 Done

Remove from algorithm and serve.
Topo sort run time analysis

For input graph $G = (V,E)$, Run Time = $O(\ ?)$

Break down into total time to:

- Find a vertex with in-degree 0
- Remove its edges
- Place vertex in output

Assume adjacency list representation
Tracking “in-degree”

Calculate and store In-Degree of all vertices in an array

→ Find vertex with in-degree 0: Search the array
→ Remove its edges: Update the array
Topo Sort run time

- Find vertices with in-degree 0:
 - $|V|$ vertices, and for each vertex it takes $O(|V|)$ to search the In-Degree array = $O(|V|^2)$
- Remove edges:
 - $|E|$ edges
- Place vertices in output:
 - $|V|$ vertices
- For input graph $G = (V,E)$
 - Run Time = $O(|V|^2 + |E|)$
 - Quadratic in $|V|$
Key idea: Initialize and maintain a *queue* (or *stack*) of vertices with In-Degree 0
Topo Sort with queue

After each vertex is output, when updating In-Degree array, enqueue any vertex whose In-Degree has become zero.
Topological Sort Algorithm #2

- Store each vertex’s In-Degree in an array
- Initialize queue with all “in-degree=0” vertices
- While there are vertices remaining in the queue:
 - Dequeue and output a vertex
 - Reduce In-Degree of all vertices adjacent to it by 1
 - Enqueue any of these vertices whose In-Degree became zero
Topo Sort run time

- Initialize In-Degree array: \(O(|E|)\)
- Initialize Queue with In-Degree 0 vertices: \(O(|V|)\)
- Dequeue and output vertex:
 - \(|V|\) vertices, each takes only \(O(1)\) to dequeue and output: \(O(|V|)\)
- Reduce In-Degree of all vertices adjacent to a vertex and Enqueue any In-Degree 0 vertices:
 - \(O(|E|)\)
- For input graph \(G=(V,E)\) run time = \(O(|V| + |E|)\)
 - Linear in \(|V|\)