Graph Intro

CSE 373 - Data Structures
May 22, 2002
Readings and References

• Reading
 › Section 9.1, *Data Structures and Algorithm Analysis in C*, Weiss

• Other References
 › Section 23.1, Representation of Graphs, *Intro to Algorithms*, Cormen, Leiserson, Rivest

Some slides based on: CSE 326 by S. Wolfman, 2000
What are graphs?

- Yes, this is a graph….

- But we are interested in a different kind of “graph”
Motivation for Graphs

• Consider the data structures we have looked at so far…
 • **Linked list**: nodes with 1 incoming edge + 1 outgoing edge
 • **Binary trees/heaps**: nodes with 1 incoming edge + 2 outgoing edges
 • **Binomial trees/B-trees**: nodes with 1 incoming edge + multiple outgoing edges
 • **Up-trees**: nodes with multiple incoming edges + 1 outgoing edge
Motivation for Graphs

- What is common among these data structures?
- How can you generalize them?
- Consider data structures for representing the following problems…
CSE Course Prerequisites at UW

Nodes = courses
Directed edge = prerequisite
Representing a Maze

Nodes = rooms
Edge = door or passage
Representing Electrical Circuits

Nodes = battery, switch, resistor, etc.
Edges = connections
Program statements

\[
x_1 = q + y \cdot z \\
x_2 = y \cdot z - q
\]

Naive:

Naive:

\[
x_1 = q + y \cdot z \\
x_2 = y \cdot z - q
\]

Nodes = symbols/operators
Edges = relationships

\[
x_1 = q + y \\ * \\
z
\]

\[
x_2 = y \cdot z - q
\]

\[
x_1 = q + y \\ * \\
z
\]

\[
x_2 = y \cdot z - q
\]

y \cdot z calculated twice

common subexpression eliminated:
Precedence

\[S_1 \quad a=0; \]
\[S_2 \quad b=1; \]
\[S_3 \quad c=a+1 \]
\[S_4 \quad d=b+a; \]
\[S_5 \quad e=d+1; \]
\[S_6 \quad e=c+d; \]

Which statements must execute before \(S_6 \)?
\(S_1, S_2, S_3, S_4 \)

Nodes = statements
Edges = precedence requirements
Information Transmission in a Computer Network

Nodes = computers
Edges = transmission rates
Traffic Flow on Highways

Nodes = cities
Edges = # vehicles on connecting highway
Soap Opera Relationships

- Victor
- Ashley
- Brad
- Trisha
- Michelle
- Wayne
- Peter
Six Degrees of Separation from Kevin Bacon

Where’s my Oscar?

Apollo 13
 - Tom Hanks
 - Gary Sinise

Forest Gump
 - Robin Wright
 - Wallace Shawn

The Princess Bride
 - Cary Elwes

After Hours
 - Rosanna Arquette

Desperately Seeking Susan
 - Cheech Marin
 - Laurie Metcalf

Toy Story
Six Degrees of Separation from Kevin Bacon

Kevin Bacon
Apollo 13
Gary Sinise
Apollo 13
Tom Hanks
Forest Gump
The Princess Bride
Robin Wright
The Princess Bride
Wallace Shawn
Cary Elwes
Desperately Seeking Susan
Rosanna Arquette
After Hours
Cheech Marin
Toy Story
Laurie Metcalf
Niche overlaps

\begin{center}
\begin{tikzpicture}
 \node[draw, circle] (raccoon) {Raccoon};
 \node[draw, circle] (opossum) at (below of=raccoon) {Opossum};
 \node[draw, circle] (shrew) at (left of=opossum) {Shrew};
 \node[draw, circle] (squirrel) at (right of=opossum) {Squirrel};
 \node[draw, circle] (mouse) at (below of=squirrel) {Mouse};
 \node[draw, circle] (crow) at (right of=squirrel) {Crow};
 \node[draw, circle] (woodpecker) at (below of=crow) {Woodpecker};
 \node[draw, circle] (owl) at (right of=opossum) {Owl};
 \node[draw, circle] (hawk) at (right of=shrew) {Hawk};

 \path (raccoon) edge (crow);
 \path (opossum) edge (shrew);
 \path (opossum) edge (squirrel);
 \path (opossum) edge (mouse);
 \path (opossum) edge (woodpecker);
 \path (opossum) edge (owl);
 \path (shrew) edge (squirrel);
 \path (squirrel) edge (mouse);
 \path (squirrel) edge (woodpecker);
 \path (squirrel) edge (hawk);
\end{tikzpicture}
\end{center}
Graph Definition

• A graph is simply a collection of nodes plus edges
 › Linked lists, trees, and heaps are all special cases of graphs
• The nodes are known as vertices (node = “vertex”)
• Formal Definition: A graph G is a pair (V, E) where
 › V is a set of vertices or nodes
 › E is a set of edges that connect vertices
Graph Example

Here is a graph $G = (V, E)$

- Each **edge** is a pair (v_1, v_2), where v_1, v_2 are vertices in V

$V = \{A, B, C, D, E, F\}$

$E = \{(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)\}$
Directed vs Undirected Graphs

- If the order of edge pairs \((v_1, v_2)\) matters, the graph is directed (also called a digraph): \((v_1, v_2) \neq (v_2, v_1)\)

- If the order of edge pairs \((v_1, v_2)\) does not matter, the graph is called an undirected graph: in this case, \((v_1, v_2) = (v_2, v_1)\)
Undirected Terminology

- Two vertices u and v are adjacent in an undirected graph G if $\{u, v\}$ is an edge in G
 - edge $e = \{u, v\}$ is incident with vertex u and vertex v
- The degree of a vertex in an undirected graph is the number of edges incident with it
 - a loop counts twice (both ends count)
 - denoted with $\deg(v)$
Directed Terminology

• Vertex u is *adjacent to* vertex v in a directed graph G if (u,v) is an edge in G
 › vertex u is the initial vertex of (u,v)
• Vertex v is *adjacent from* vertex u
 › vertex v is the terminal (or end) vertex of (u,v)
• Degree
 › *in-degree* is the number of edges with the vertex as the terminal vertex
 › *out-degree* is the number of edges with the vertex as the initial vertex
 › a loop adds 1 to in-degree and 1 to out-degree
Handshaking Theorem

• Let \(G=(V,E) \) be an undirected graph with \(|E|=e\) edges.
• Then \(2e = \sum_{v \in V} \deg(v) \)
• Every edge contributes +1 to the degree of each of the two vertices it is incident with:
 › number of edges is exactly half the sum of \(\deg(v) \)
 › the sum of the \(\deg(v) \) values must be even
Graph Representations

- Space and time are analyzed in terms of:
 - Number of vertices = \(|V|\) and
 - Number of edges = \(|E|\)
- There are two ways of representing graphs:
 - The *adjacency matrix* representation
 - The *adjacency list* representation
Adjacency Matrix

\[
M(v, w) = \begin{cases}
1 & \text{if } (v, w) \text{ is in } E \\
0 & \text{otherwise}
\end{cases}
\]

\[
\begin{pmatrix}
A & B & C & D & E & F \\
A & 0 & 1 & 0 & 1 & 0 & 0 \\
B & 1 & 0 & 1 & 0 & 0 & 0 \\
C & 0 & 1 & 0 & 1 & 1 & 0 \\
D & 1 & 0 & 1 & 0 & 1 & 0 \\
E & 0 & 0 & 1 & 1 & 0 & 0 \\
F & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

Space \(= |V|^2 \)
Adjacency Matrix for a Digraph

\[
\begin{array}{ccccccc}
 & A & B & C & D & E & F \\
 A & 0 & 1 & 0 & 1 & 0 & 0 \\
 B & 0 & 0 & 1 & 0 & 0 & 0 \\
 C & 0 & 0 & 0 & 1 & 1 & 0 \\
 D & 0 & 0 & 0 & 0 & 1 & 0 \\
 E & 0 & 0 & 0 & 0 & 0 & 0 \\
 F & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[M(v, w) = \begin{cases}
1 & \text{if } (v, w) \text{ is in } E \\
0 & \text{otherwise}
\end{cases}\]

\[\text{Space} = |V|^2\]
Adjacency List

For each v in V, $L(v) = \text{list of } w \text{ such that } (v, w) \text{ is in } E$

Space = $a \ |V| + 2 \ b \ |E|$
Adjacency List for a Digraph

For each \(v \) in \(V \), \(L(v) = \) list of \(w \) such that \((v, w) \) is in \(E \)

\[
\text{Space} = a |V| + b |E|
\]
Bipartite

• A simple graph is bipartite if:
 › its vertex set V can be partitioned into two disjoint non-empty sets such that
 • every edge in the graph connects a vertex in one set to a vertex in the other set
 • which also means that no edge connects a vertex in one set to another vertex in the same set
 › no triangular connections
Bipartite examples

\{a, b, d\}
\{c, e, f, g\}
Bipartite example - not

\[a \text{ says that } b \text{ and } f \text{ should be in } S_2, \]
\[\text{but } b \text{ says } a \text{ and } f \text{ should be in } S_1. \]

TILT!
Complete bipartite graph $K_{m,n}$

- vertex set partitioned into two subsets of sizes m and n
- all vertices in one subset are connected to all vertices in the other subset