Disjoint Sets

CSE 373 - Data Structures
May 20, 2002

Disjoint Set ADT

- **Find**: Given an element, return the “name” of its equivalence class
 - note that we are finding the equivalence class, not the element
- **Union**: Given the “names” of two equivalence classes, merge them into one class
 - may have a new name or one of the two old names

Disjoint Set Example

Equivalence Classes = \{1,4,8\}, \{2,3\}, \{6\}, \{7\}, \{5,9,10\}
Name of equivalence class underlined

Readings and References

- **Reading**
 - Chapter 8, *Data Structures and Algorithm Analysis in C*, Weiss

- **Other References**
Up-Tree Virtual Data Structure

- Each equivalence class (or discrete set) is an up-tree with its root as its representative member.
- All members of a given set are nodes in that set’s up-tree.
- Hash table maps input data to the node associated with that data.

Hash table:
- input string → integer

Up-trees are usually **not** binary!

Example of Find

Find: Just traverse from the node to the root.

Example of Union

Union: Just hang one root from the other.

An Up-Tree Implementation

- Forest of up-trees can easily be stored in an array “up”.
- If node names are positive integers or characters, can use a very simple, perfect hash function: Hash(X) = X
- up[X] = parent of X;
 = 0 if X is a root

Array up:

```
   -  0  1  0  1  2  3  1  0
0  1/a  2/b  3/c  4/d  5/e  6/f  7/g  8/h
```
Example of Find

Traverse to the root

Find(e) = a

Runtime = ?

Example of Union

Hang one root from another

Union(c,a)

Runtime = ?

Now:
Find(f) = c
Find(e) = c

Change a (from 0) to point to c (= 3)

Example: Union(b,e)

Example: Union(a,d)
Example: Union(a,b)

Union(d,e) – But (you say) d and e are not roots!
May be allowed in some implementations – do Find first to get roots
Since Find(d) = Find(e), union already done!

But: while we’re finding e, could we do something to speed up Find(e) next time? (hold that thought!)

Example: Union(h,i)

Example: Union(c,f)
Example: Union(c,a)

An Implementation of Find

```c
int Find(int X, DisjSet up) {
    // Assumes X = Hash(X_Element)
    // X_Element could be str/char etc.
    if (up[X] <= 0) // Parent is flag value
        return X; // so X is a root
    else // else find root recursively
        return Find(up[X], up);
}
```

Runtime of Find: O(max height)

Height of tree depends on the previous Unions that built the particular tree
- Best case: U(1,2), U(1,3), U(1,4),… O(1)
- Worst case: U(2,1), U(3,2), U(4,3),… O(N)

An Implementation of Union

```c
void Union(DisjSet up, int X, int Y) {
    //Make sure X, Y are roots
    assert(up[X] == 0); assert(up[Y] == 0);
    up[Y] = X;
}
```

Runtime of Union: O(1)

Issue with Union(c,a)

Could we do a better job on this Union? What happened to the depth of node e?
Speeding Up: Union-by-Size

- Can we speed things up by being clever about growing our up-trees?
 - Always make root of *larger* tree the new root
 - Why? Minimizes height of the new up-tree

Union(c,a)

Storing Size Information

- Instead of storing 0 in root, store up-tree size as **negative value** in root node

Array `up`:

<table>
<thead>
<tr>
<th>0</th>
<th>1/a</th>
<th>2/b</th>
<th>3/c</th>
<th>4/d</th>
<th>5/e</th>
<th>6/f</th>
<th>7/g</th>
<th>8/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-5</td>
<td>1</td>
<td>-2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Union-by-Size Code

```c
void Union(DisjSet up, int X, int Y) {
    // X, Y are roots containing (-size) of up-trees
    assert(up[X] < 0);
    assert(up[Y] < 0);

    if (-up[X] > -up[Y]) {// X is bigger than Y
        up[X] += up[Y]; // so X is new root
        up[Y] = X; // and Y points to X
    }
    else {// size of X ≤ size of Y
        up[Y] += up[X]; // so Y is new root
        up[X] = Y; // and X points to Y
    }
}
```

Union-by-Size: Analysis

- Finds are $O(\text{max up-tree height})$ for a forest of up-trees containing N nodes
- Number of nodes in an up-tree of height h using union-by-size is $\geq 2^h$
 - **Base case:** $h = 0$, tree has $2^0 = 1$ node
 - **Induction hypothesis:** Assume true for $h < h'$
 - **Induction Step:** New tree of height h' was formed via union of two trees of height $h' - 1$
 - Each tree then has $\geq 2^{h'-1}$ nodes by the induction hypothesis
 - So, total nodes $\geq 2^{h' - 1} + 2^{h' - 1} = 2^h$
 - True for all h
Union-by-Height

- Textbook describes alternative strategy of Union-by-height
 - Keep track of height of each up-tree in the root nodes
 - Union makes root of up-tree with greater height the new root
- Same results and similar implementation as Union-by-Size
 - Find is $O(\log N)$ and Union is $O(1)$

Find and Path Compression

- M Finds on same element take $O(M \log N)$ time
 - Can we modify Find to have side-effects so that next Find will be faster?
- Path Compression
 - When we do a Find, we follow a path in the tree from the given element X all the way up to the root
 - The tree does not have to be a binary tree
 - So we can reroot the nodes on the path so that they are all direct children of the root of their tree

Example: Path Compression

Path compression! The next Find(e) will run faster.

Remember splay trees? Similar idea … self adjust to improve future performance based on actual usage.

Another Path Compression Example
Path Compression Code

```c
int Find(int X, DisjSet up) {
    // Assumes X = Hash(X_Element)
    // X_Element could be str/char etc.
    if (up[X] <= 0) // Parent is flag value
        return X; // so X is root
    else // else find root recursively
        return up[X] = Find(up[X],up);
}
```

Make all nodes along access path point to root

New running time of Find?

- Find still takes O(max up-tree height) worst case
- But what happens to the tree heights over time?
 - we are collapsing the tree by having each node point to its root
- What is the amortized run time of Find if we do M Finds?

```c
int Find(int X, DisjSet up) {
    // Assumes X = Hash(X_Element)
    // X_Element could be str/char etc.
    if (up[X] <= 0) // Parent is flag value
        return X; // so X is root
    else // else find root recursively
        return up[X] = Find(up[X],up);
}
```

Find Run Time Analysis

- What is the amortized run time of Find if we do M Finds?
 - (one or more) operations that take O(max height)
 - M-(one or more) operations that take O(1) constant time
 - amortized total cost is O(1) constant time

Slow-growing functions

- How fast does log N grow? \(\log N = 4 \) for \(N = 16 = 2^4 \)
 - Grows quite slowly
- Let \(\log^{(k)} N = \log(\log(\log \ldots (\log N))) \) \((k \text{ logs})\)
- Let \(\log^* N \) be minimum \(k \) such that \(\log^{(k)} N \leq 1 \)
- How fast does \(\log^* N \) grow? \(\log^* N = 4 \) for \(N = 65536 = 2^{22} \)
 - Grows very slowly
- Ackermann created a really explosive function \(A(i, j) \) and its inverse \(\alpha(M, N) \)
- How fast does \(\alpha(M, N) \) grow? \(\alpha(M, N) = 4 \) for \(M (\geq N) \) far larger than the number of atoms in the universe (\(2^{300} \))!
 - grows very, very slowly (slower than \(\log^* N \))
Find and Union Run Time Analysis

- When both path compression and Union-by-Size are used, the worst case run time for a sequence of M operations (Unions or Finds)
 - Textbook proves $O(M \log^* N)$ time
 - R. E. Tarjan showed $\Theta(M \alpha(M, N))$
 - $\alpha(M, N) \leq 4$ for all practical choices of M and N
- Amortized run time per operation
 - $= \text{total time}/(\# \text{ operations})$
 - $= \Theta(M \alpha(M, N))/M = \Theta(\alpha(M, N))$
 - for all practical purposes: $O(1)$ constant time

Disjoint Set and Union/Find

- Disjoint Set data structure arises in many applications where objects of interest fall into different equivalence classes or sets
 - Cities on a map, electrical components on chip, computers in a network, people related to each other by blood, etc.
- Two main operations: Union of two classes and Find class name for a given element

Disjoint Set and Union/Find

- Up-Tree data structure allows efficient array implementation
 - Unions take $O(1)$ worst case time, Finds can take $O(N)$
 - Union-by-Size reduces worst case time for Find to $O(\log N)$
 - Union-by-Size plus Path Compression allows further speedup
 - Any sequence of M Union/Find operations results in $O(1)$ amortized time per operation (for all practical purposes)