Disjoint Sets

CSE 373 - Data Structures
May 17, 2002
Readings and References

• Reading
 › Chapter 8, *Data Structures and Algorithm Analysis in C*, Weiss

• Other References
Relations on a set

• Consider the relation “=” between integers
 › For any integer a, a = a
 › For integers a and b, a = b means that b = a
 › For integers a, b, and c, a = b and b = c means that a = c
Relations on a set

• Consider cities connected by two-way roads
 › Seattle is connected to itself
 › Seattle is connected to Everett means Everett is connected to Seattle
 › If Seattle is connected to Everett and Everett is connected to Bellingham, then Seattle is connected to Bellingham

• Consider electrical connections between components on a computer chip
Equivalence Relations

• An equivalence relation R obeys three properties:
 › **reflexive:** for any x, xRx is true
 › **symmetric:** for any x and y, xRy implies yRx
 › **transitive:** for any x, y, and z, xRy and yRz
 implies xRz

• Preceding relations are all examples of
 equivalence relations
Equivalence Relations

• What are some relations that are not equivalence relations?
 › What about “<” on integers?
 • not reflexive, not symmetric
 › What about “≤” on integers?
 • not symmetric
 › What about “is having an affair with” in a soap opera?
 • Victor IHAAW Ashley IHAAW Brad does not imply
 Victor IHAAW Brad ↴ not transitive
 • probably not reflexive, although in the soaps, who
 knows ...
Equivalence Classes & Disjoint Sets

- A specific equivalence relation operator R divides all the elements into disjoint sets of related items.
- Let “~” be an equivalence relation.
- If $a \sim b$, then a and b are in the same equivalence class.
Equivalence Class Examples

• If ~ denotes “electrically connected,” then sets of connected components on a computer chip form equivalence classes

• On a map, cites that have two-way roads between them form equivalence classes
 › as long as you say that reflexive means that just sitting in town satisfies Seattle ~ Seattle
 • path length = 0
 › We don’t have loop roads that go out and come back
 • path length = 1
Modulo example

• The relation “Modulo N” divides all integers in N equivalence classes.
 › For example, “a mod 5” on the integers produces 5 equivalence classes (remainders 0 through 4 when the integers are divided by 5)
 • \(0\) ~ 5 ~ 10 ~ …
 • \(1\) ~ 6 ~ 11 ~ …
 • \(2\) ~ 7 ~ 12 ~ …
 • \(3\) ~ 8 ~ 13 ~ …
 • \(4\) ~ 9 ~ 14 ~ …
Problem Definition

• Given a set of elements and some equivalence relation ~ between them, we want to figure out the equivalence classes

• Given an element, we want to find the equivalence class it belongs to
 › E.g. Under mod 5, 13 belongs to the equivalence class of 3
 › E.g. For the map example, want to find the equivalence class of Everett (all the cities it is connected to)
Problem Definition

- Given a new element, want to add it to an equivalence class \textbf{(union)}
 - Add 18 to the “a mod 5” relation already containing the numbers shown
 - Since $18 \sim 3 \sim 8 \sim 13$, perform a union of 18 with equivalence class of 3, 8, and 13
 - Add Monroe to the city connection relation
 - Everett is connected to Monroe, so add Monroe to the same equivalence class as Everett, Seattle, and Bellingham
Disjoint Set ADT

- **Find**: Given an element, return the “name” of its equivalence class
 - note that we are finding the equivalence class, not the element
- **Union**: Given the “names” of two equivalence classes, merge them into one class
 - may have a new name or one of the two old names
Disjoint Set ADT

- The disjoint set ADT divides elements into equivalence classes and manages the combination of classes depending on the relation of interest
 - Names of classes are arbitrary e.g. 1 through N, so long as Find returns the same name for 2 elements in the same equivalence class
Disjoint Set ADT Properties

- **Disjoint set equivalence property**
 - every element belongs to exactly one set (its equivalence class)

- **Dynamic equivalence property**
 - the name of the equivalence class that an element is in may change after a union
 - however, all elements in the class will always have the same equivalence class name
More Formal Definition

- Given a set $U = \{a_1, a_2, \ldots, a_n\}$
- Maintain a partition of U, a set of subsets (or equivalence classes) of U denoted by $\{S_1, S_2, \ldots, S_k\}$ such that:
 - each pair of subsets S_i and S_j are disjoint: $S_i \cap S_j = \emptyset$
 - together, the subsets cover U: $U = \bigcup_{i=1}^{k} S_i$
 - each subset has a unique name
- Union(a, b) creates a new subset which is the union of a’s subset and b’s subset
- Find(a) returns a unique name for a’s subset
Simple array implementation?

- How about an array implementation?
 - Array A → A[i] holds the class name for element i
 - Running time for Find(i)?
 - just return A[i] : O(1)
 - Running time for Union(i,j)?
 - If first N/2 elements have class name 1 and next N/2 have class name 2, Union(1,2) will need to change class names of N/2 items : O(N)
Linked List Implementation?

• How about linked lists?
 › One linked list for each equivalence class
 › Running time for Find(i)?
 • must scan all lists in worst case: \(O(N)\)
 › Running time for Union(i,j)?
 • just append one list to the other: \(O(1)\)

• Tradeoff between Union-Find – cannot do both in \(O(1)\) time
 › M Finds and N-1 Unions (the max)
 • array \(O(M + N^2)\) or lists \(O(MN+N)\)
Let’s use a new Data Structure

- **Intuition:** Finding the representative member (= class name) of a set is like the opposite of finding a key in a given set.
- So, instead of trees with pointers from each node to its children, let’s use trees with a pointer from each node to its parent.
- Such trees are known as **Up-Trees**.
Up-Tree Data Structure

- Each equivalence class (or discrete set) is an up-tree with its root as its representative member.
- All members of a given set are nodes in that set’s up-tree.
- Hash table maps input data to the node associated with that data.
 - input string → integer

Up-trees are usually not binary!
Example of Find

Find: Just traverse from the node to the root.

\[
\begin{align*}
\text{find}(f) &= c \\
\text{find}(e) &= a
\end{align*}
\]

Runtime = ?
Example of Union

Union: Just hang one root from the other.

union(c,a)

Now:
find(f) = c
find(e) = c

Runtime = ?