Disjoint Sets

CSE 373 - Data Structures
May 17, 2002

Readings and References

- Reading
 - Chapter 8, *Data Structures and Algorithm Analysis in C*, Weiss

- Other References

Relations on a set

- Consider the relation “=” between integers
 - For any integer a, a = a
 - For integers a and b, a = b means that b = a
 - For integers a, b, and c, a = b and b = c means that a = c

Relations on a set

- Consider cities connected by two-way roads
 - Seattle is connected to itself
 - Seattle is connected to Everett means Everett is connected to Seattle
 - If Seattle is connected to Everett and Everett is connected to Bellingham, then Seattle is connected to Bellingham

- Consider electrical connections between components on a computer chip
Equivalence Relations

An equivalence relation \(R \) obeys three properties:

- **reflexive:** for any \(x \), \(xRx \) is true
- **symmetric:** for any \(x \) and \(y \), \(xRy \) implies \(yRx \)
- **transitive:** for any \(x \), \(y \), and \(z \), \(xRy \) and \(yRz \) implies \(xRz \)

Preceding relations are all examples of **equivalence relations**

What are some relations that are not equivalence relations?

- What about “\(<\)” on integers?
 - not reflexive, not symmetric
- What about “\(\leq\)” on integers?
 - not symmetric
- What about “is having an affair with” in a soap opera?
 - Victor IHAAW Ashley IHAAW Brad does not imply Victor IHAAW Brad
 - probably not reflexive, although in the soaps, who knows ...

Equivalence Classes & Disjoint Sets

A specific equivalence relation operator \(R \) divides all the elements into **disjoint sets** of related items

Let “~” be an equivalence relation

If \(a \sim b \), then \(a \) and \(b \) are in the same **equivalence class**

Equivalence Class Examples

- If \(\sim \) denotes “electrically connected,” then sets of connected components on a computer chip form equivalence classes
- On a map, cites that have two-way roads between them form equivalence classes
 - as long as you say that reflexive means that just sitting in town satisfies Seattle \(\sim \) Seattle
 - path length = 0
 - We don’t have loop roads that go out and come back
 - path length = 1
Modulo example

- The relation “Modulo N” divides all integers in N equivalence classes.
 - For example, “a mod 5” on the integers produces 5 equivalence classes (remainders 0 through 4 when the integers are divided by 5)
 - 0 ~ 5 ~ 10 ~ ...
 - 1 ~ 6 ~ 11 ~ ...
 - 2 ~ 7 ~ 12 ~ ...
 - 3 ~ 8 ~ 13 ~ ...
 - 4 ~ 9 ~ 14 ~ ...

Problem Definition

- Given a set of elements and some equivalence relation ~ between them, we want to figure out the equivalence classes
- Given an element, we want to find the equivalence class it belongs to
 - E.g. Under mod 5, 13 belongs to the equivalence class of 3
 - E.g. For the map example, want to find the equivalence class of Everett (all the cities it is connected to)

Problem Definition

- Given a new element, want to add it to an equivalence class (union)
 - Add 18 to the “a mod 5” relation already containing the numbers shown
 - Since 18 ~ 3 ~ 8 ~ 13, perform a union of 18 with equivalence class of 3, 8, and 13
 - Add Monroe to the city connection relation
 - Everett is connected to Monroe, so add Monroe to the same equivalence class as Everett, Seattle, and Bellingham

Disjoint Set ADT

- **Find**: Given an element, return the “name” of its equivalence class
 - note that we are finding the equivalence class, not the element
- **Union**: Given the “names” of two equivalence classes, merge them into one class
 - may have a new name or one of the two old names
Disjoint Set ADT

- The disjoint set ADT divides elements into equivalence classes and manages the combination of classes depending on the relation of interest
 - Names of classes are arbitrary e.g. 1 through N, so long as Find returns the same name for 2 elements in the same equivalence class

Disjoint Set ADT Properties

- **Disjoint set equivalence property**
 - every element belongs to exactly one set (its equivalence class)

- **Dynamic equivalence property**
 - the name of the equivalence class that an element is in may change after a union
 - however, all elements in the class will always have the same equivalence class name

More Formal Definition

- Given a set \(U = \{a_1, a_2, \ldots, a_n\} \)
- Maintain a partition of \(U \), a set of subsets (or equivalence classes) of \(U \) denoted by \(\{S_1, S_2, \ldots, S_k\} \) such that:
 - each pair of subsets \(S_i \) and \(S_j \) are disjoint: \(S_i \cap S_j = \emptyset \)
 - together, the subsets cover \(U \): \(U = \bigcup_{i=1}^{k} S_i \)
 - each subset has a unique name
- Union(\(a, b \)) creates a new subset which is the union of \(a \)’s subset and \(b \)’s subset
- Find(\(a \)) returns a unique name for \(a \)’s subset

Simple array implementation?

- How about an array implementation?
 - Array \(A \rightarrow A[i] \) holds the class name for element \(i \)
 - E.g. if 18 \(\sim \) 3, pick 3 as class name and set \(A[18] = A[3] = 3 \)
 - Running time for Find(\(i \))?
 - just return \(A[i] : O(1) \)
 - Running time for Union(\(i,j \))?
 - If first \(N/2 \) elements have class name 1 and next \(N/2 \) have class name 2, Union(1,2) will need to change class names of \(N/2 \) items : \(O(N) \)
Linked List Implementation?

- How about linked lists?
 - One linked list for each equivalence class
 - Running time for Find(i)?
 - must scan all lists in worst case: \(O(N) \)
 - Running time for Union(i,j)?
 - just append one list to the other: \(O(1) \)
- Tradeoff between Union-Find – cannot do both in \(O(1) \) time
 - \(M \) Finds and \(N-1 \) Unions (the max)
 - array \(O(M + N^2) \) or lists \(O(MN+N) \)

Let’s use a new Data Structure

- **Intuition:** Finding the representative member (= class name) of a set is like the opposite of finding a key in a given set
- So, instead of trees with pointers from each node to its children, let’s use **trees with a pointer from each node to its parent**
- Such trees are known as **Up-Trees**

Up-Tree Data Structure

- Each equivalence class (or discrete set) is an up-tree with its root as its representative member
- All members of a given set are nodes in that set’s up-tree
- Hash table maps input data to the node associated with that data
 - input string → integer
 - \{a,d,g,b,e\} \{c,f\} \{h,i\}
 - Up-trees are usually not binary!

Example of Find

Find: Just traverse from the node to the root.

- \(\text{find}(f) = c \)
- \(\text{find}(e) = a \)

Runtime = ?
Example of Union

Union: Just hang one root from the other.

Now: \[\text{find}(f) = c \]
\[\text{find}(e) = c \]

Runtime = ?

- Union: just hang one root from the other.
- Now: \[\text{find}(f) = c \]
\[\text{find}(e) = c \]