Sorting Summary

CSE 373 - Data Structures
May 15, 2002
Readings and References

• Reading
 › Sections 7.8-7.11, *Data Structures and Algorithm Analysis in C*, Weiss

• Other References
How fast can we sort?

- Heapsort, Mergesort, and Quicksort all run in $O(N \log N)$ best case running time
- Can we do any better?
- Can we believe LaMoC, Inc, which claims to have discovered an $O(N \log(\log N))$ general purpose sorting algorithm?
 - The US patent office probably believes it, do you?
No! (if using comparisons only)

- Recall our basic assumption: we can only compare two elements at a time
 - we can only reduce the possible solution space by half each time we make a comparison

- Suppose you are given N elements
 - Assume no duplicates

- How many possible orderings can you get?
 - Example: a, b, c (N = 3)
Permutations

• How many possible orderings can you get?
 › Example: a, b, c (N = 3)
 › (a b c), (a c b), (b a c), (b c a), (c a b), (c b a)
 › 6 orderings = 3•2•1 = 3! (ie, “3 factorial”)
 › All the possible permutations of a set of 3 elements

• For N elements
 › N choices for the first position, (N-1) choices for the second position, …, (2) choices, 1 choice
 › N(N-1)(N-2)⋯(2)(1)= N! possible orderings
Decision Tree

The leaves contain all the possible orderings of a, b, c
Decision Trees

• A Decision Tree is a Binary Tree such that:
 › Each node = a set of orderings
 • ie, the remaining solution space
 › Each edge = 1 comparison
 › Each leaf = 1 unique ordering
 › How many leaves for N distinct elements?
 • N!, ie, a leaf for each possible ordering
• Only 1 leaf has the ordering that is the desired correctly sorted arrangement
Decision Trees and Sorting

- Every sorting algorithm corresponds to a decision tree
 - Finds correct leaf by choosing edges to follow
 - ie, by making comparisons
 - Each decision reduces the possible solution space by one half
- Run time is \geq maximum no. of comparisons
 - maximum number of comparisons is the length of the longest path in the decision tree
 - the length of the longest path is the depth of the tree
Decision Tree Depth Example

possible orders

a < b < c, b < c < a, c < a < b, a < c < b, b < a < c, c < b < a

actual order

a < b < c
b < c < a
b < a < c
b < a < c
b < c < a
b < a < c
How many leaves on a tree?

• Suppose you have a binary tree of depth \(d \).
 How many leaves can the tree have?
 › \(d = 1 \rightarrow \) at most 2 leaves,
 › \(d = 2 \rightarrow \) at most 4 leaves, etc.
How deep is it, Jim?

- A binary tree of depth d has at most 2^d leaves
 - $d = 1 \rightarrow 2$ leaves, $d = 2 \rightarrow 4$ leaves, etc.
 - Can prove by induction
- The decision tree has $L = N!$ leaves
- Depth d must be deep enough such that $2^d \geq L$
 - and $2^d \geq L \rightarrow d \geq \log L$
- So the decision tree depth is $d \geq \log(N!)$
log(N!) is $\Omega(N \log N)$

\[
\log(N!) = \log\left(N \cdot (N-1) \cdot (N-2) \cdots (2) \cdot (1)\right)
\]

\[
= \log N + \log(N-1) + \log(N-2) + \cdots + \log 2 + \log 1
\]

\[
\geq \log N + \log(N-1) + \log(N-2) + \cdots + \log \frac{N}{2}
\]

\[
\geq \frac{N}{2} \log \frac{N}{2}
\]

\[
\geq \frac{N}{2} (\log N - \log 2) = \frac{N}{2} \log N - \frac{N}{2}
\]

\[
= \Omega(N \log N)
\]
Ω(N log N)

- Run time of any comparison-based sorting algorithm is Ω(N log N)
 - Any sorting algorithm based on comparisons between elements requires Ω(N log N) comparisons
- Can never find an O(N log log N) general purpose sorting algorithm
 - sorry, LaMoC, Inc!
 - get a clue, patent office
What about bucket sort?

- You may be saying to yourself
 “But on slide 27 of the List lecture on April 5th, he showed that the bucket sort only takes $O(N+B)$ operations, what's up with that?”

- And I say to you: Advance knowledge of the data lets you do all sorts of magic
 - perfect hash
 - bucket sort, radix sort
Bucket Sort: Sorting integers

- Bucket sort: \(N \) integers in the range 0 to \(B-1 \)
 - Array Count has \(B \) elements ("buckets"), initialized to 0
 - Given input integer \(i \), \(\text{Count}[i]++ \)
 - After reading all \(N \) numbers go through the \(B \) buckets and read out the resulting sorted list
 - \(N \) operations to read and record the numbers plus \(B \) operations to recover the sorted numbers
Bucket Sort Run Time?

• What is the running time for sorting N integers?
 › Running Time: $O(B+N)$
 • B to zero/scan the array and N to read the input
 › If B is $\Theta(N)$, running time for Bucket sort = $O(N)$
• Doesn’t this violate the $O(N \log N)$ lower bound result??
• No – When we do $\text{Count}[i]++$, we are comparing one element with all B elements, not just two elements
Radix Sort: Sorting integers

- Radix sort = multi-pass bucket sort of integers in the range 0 to B^P-1
 - Bucket-sort from least significant to most significant “digit” (base B)
 - Use linked list to store numbers that are in same bucket
 - Requires $P*(B+N)$ operations where P is the number of passes (the number of base B digits in the largest possible input number)
 - Do P passes instead of using B^P space
Radix Sort Example

Data
- 478
- 537
- 9
- 721
- 3
- 38
- 123
- 67

Bucket Sort
- **by 1’s digit**
- **by 10’s digit**
- **by 100’s digit**

This example uses $B=10$ and base 10 digits for simplicity of demonstration. Larger bucket counts should be used in an actual implementation.
Internal versus External Sorting

• So far assumed that accessing A[i] is fast – Array A is stored in internal memory (RAM)
 › Algorithms so far are good for internal sorting

• What if A is so large that it doesn’t fit in internal memory?
 › Data on disk or tape
 › Delay in accessing A[i] – e.g. need to spin disk and move head
Internal versus External Sorting

• Need sorting algorithms that minimize disk/tape access time
 › External sorting – Basic Idea:
 • Load chunk of data into RAM, sort, store this “run” on disk/tape
 • Use the Merge routine from Mergesort to merge runs
 • Repeat until you have only one run (one sorted chunk)
 • Text gives some examples

• But … how important is external sorting?
Internal Memory is getting cheap...

Price (in US$) for 1 MB of RAM

From: http://www.macresource.com/mrp/ramwatch/trend.shtml
External Sorting

• For most data sets, internal sorting in a large memory space is possible and intricate external sorts are not required
 › Tapes seldom used these days – random access disks are faster and getting cheaper with greater capacity
 › Operating systems provide very, very large virtual memory address spaces so it looks like an internal sort, even though you are using the disk
 • be careful though, you can end up doing a lot of disk I/O if you’re not careful
Okay…so let’s talk about performance in practice

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Run time (in seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion sort</td>
<td></td>
</tr>
<tr>
<td>Heapsort</td>
<td></td>
</tr>
<tr>
<td>Shellsort</td>
<td></td>
</tr>
<tr>
<td>Quicksort</td>
<td></td>
</tr>
</tbody>
</table>

[Data from textbook Chap. 7]
Input Size N

Run time (in seconds)

- Heapsort
- Shellsort
- Quicksort
- Insertion sort
Summary of Sorting

• Sorting choices:
 › $O(N^2)$ – Bubblesort, Selection Sort, Insertion Sort
 › $O(N^x)$ – Shellsort ($x = 3/2, 4/3, 7/6, 2, \text{etc. depending on increment sequence}$)
 › $O(N \log N)$ average case running time:
 • Heapsort: uses 2 comparisons to move data (between children and between child and parent) – may not be fast in practice (see graph)
 • Mergesort: easy to code but uses $O(N)$ extra space
 • Quicksort: fastest in practice but trickier to code, $O(N^2)$ worst case
Practical Sorting

• When N is large, use Quicksort with median3 pivot
• For small N (< 20), the N log N sorts are slower due to extra overhead (larger constants in big-Oh notation)
 › For N < 20, use Insertion sort
 › In Quicksort, do insertion sort when sub-array size < 20 (instead of partitioning)
• When you need a sorter
 › remember the various candidate algorithms
 › think about the type and quantity of your data
 › look up an appropriate reference implementation and adapt it to your requirements (ElementType, comparator, etc)