Quick Sort

CSE 373 - Data Structures
May 15, 2002
Readings and References

• Reading
 › Section 7.7, *Data Structures and Algorithm Analysis in C*, Weiss

• Other References
 › C LR
Sorting Ideas - swap adjacent

- Swap adjacent elements
 - Bubble sort
 - it works, but it's always slow
 - Insertion sort
 - works well on already sorted or partially sorted input
 - low overhead so it works well on small inputs or as the basic sorter for a larger algorithm
Sorting Ideas - swap non-adjacent

- Swap non-adjacent elements
 - Shell sort
 - resolves multiple inversions with a single swap
 - does an insertion sort of variable sized sub-arrays
 - choice of increments critical
 - Heap sort
 - resolves multiple inversions with a single swap
 - does insertion sort of paths through a binary heap
Sorting Ideas - recursion and merge

- Merging two sorted arrays is *fast*
 - Partition the array and sort each part separately, then merge the results
 - The merge can resolve many inversions with each element merged

- Merge sort
 - Fast
 - requires extra O(N) temporary array
Sorting Ideas - recursion and join

- Joining two sorted arrays can be very fast
 - Partition the array into a set of little elements and a set of big elements, sort each partition, and join them
 - The partitioning operation can move elements a long way towards the final location in one move

- Quick Sort
 - Fast
 - in-place sort (no extra space required)
Quicksort

- Quicksort uses a divide and conquer strategy, but does not require the $O(N)$ extra space that MergeSort does
 - Partition array into left and right sub-arrays
 - the elements in left sub-array are all less than pivot
 - elements in right sub-array are all greater than pivot
 - Recursively sort left and right sub-arrays
 - Concatenate left and right sub-arrays in $O(1)$ time
“Four easy steps”

• To sort an array S
 › If the number of elements in S is 0 or 1, then return. The array is sorted.
 › Pick an element v in S. This is the pivot value.
 › Partition S-$\{v\}$ into two disjoint subsets, $S_1 = \{\text{all values } x \leq v\}$, and $S_2 = \{\text{all values } x \geq v\}$.
 › Return QuickSort(S_1), v, QuickSort(S_2)
The steps of QuickSort

1. Select pivot value.
2. Partition S.
 - QuickSort(S1) and QuickSort(S2).
3. Presto! S is sorted.

[Weiss]
Quicksort Example

- Sort the array containing:

\[9, 16, 4, 15, 2, 5, 17, 1 \]

\[
\begin{array}{c}
\text{Partition} \\
4, 2, 5, 1 < 9 < 16, 15, 17
\end{array}
\]

\[
\begin{array}{c}
\text{Partition} \\
2, 1, 4, 5 \\
1, 2, 5, 15, 16, 17
\end{array}
\]

\[
\begin{array}{c}
\text{Concatenate} \\
1, 2, 4, 5, 9, 15, 16, 17
\end{array}
\]
Details, details

• “The algorithm so far lacks quite a few of the details”

• Implementing the actual partitioning

• Picking the pivot
 › want a value that will cause $|S_1|$ and $|S_2|$ to be non-zero, and close to equal in size if possible

• Dealing with cases where the element equals the pivot
Quicksort Partitioning

- Need to partition the array into left and right sub-arrays
 - the elements in left sub-array are \leq pivot
 - elements in right sub-array are \geq pivot
- How do the elements get to the correct partition?
 - Choose an element from the array as the pivot
 - Make one pass through the rest of the array and swap as needed to put elements in partitions
Partitioning is done In-Place

- One implementation (there are others)
 - median3 finds pivot and sorts left, center, right
 - Swap pivot with next to last element
 - Set pointers i and j to start and end of array
 - Increment i until you hit element \(A[i] > \text{pivot} \)
 - Decrement j until you hit element \(A[j] < \text{pivot} \)
 - Swap \(A[i] \) and \(A[j] \)
 - Repeat until i and j cross
median-of-3
pivot = 6
median3 sorts 3 elements

i=left; j=right-1

while(A[++i]<pivot){}

while(A[--j]>pivot){}

swap(&A[i],&A[j])

while(A[++i]<pivot){}

while(A[--j]>pivot){}

swap(&A[i],&A[j])
while(A[++i]<pivot){}
while(A[--j]>pivot){}
swap(&A[i],&A[right-1])
Choosing the Pivot (1)

• First (bad) Idea
 › Pick the first element as pivot
 › What if it is the smallest or largest?
 › What if the array is sorted?
 How many recursive calls does quicksort make?
 • O(N) calls, and it does O(N) work for each call, so you do O(N^2) work when the array is already sorted!

|S_1| = 0
\[\emptyset \]
\[2 \]
\[16 \]
\[4 \]
\[15 \]
\[9 \]

|S_2| = |S| - 1
\[\emptyset \]
\[2 \]
\[4 \]
\[9 \]
\[15 \]
\[16 \]

pivot

|S_1| = 0
\[\emptyset \]
\[2 \]
\[16 \]
\[4 \]
\[15 \]
\[9 \]

|S_2| = |S| - 1
\[\emptyset \]
\[2 \]
\[4 \]
\[9 \]
\[15 \]
\[16 \]

\[\emptyset \]
\[9 \]
\[15 \]
\[16 \]

\[\emptyset \]
\[15 \]
\[16 \]
Choosing the Pivot (2)

• 2nd (okay) Idea:
 › Pick a \textit{random} element to be the pivot
 › Gets rid of asymmetry in left/right sizes
 › Actually works pretty well
 › But it requires calls to pseudo-random number generator
 • expensive in terms of time
 • many implementations are not particularly random
Choosing the Pivot (3a)

- Third idea
 - Pick *median* element (N/2\(^{th}\) largest element)
 - This is great ... it splits \(S\) exactly in two
 - But it’s hard to find the median element without sorting the entire array first, which is why we are here in the first place ...
Choosing the Pivot (3b)

- Find the median of the first, middle and last elements - "median of 3"
- If the data in the array is not sorted, median of 3 is similar to picking a random pivot
- If the data in the array is presorted, this will pick a value near the actual median of the entire array, which is good
Median-of-Three Pivot

- Find the median of the first, middle and last element

- Takes only $O(1)$ time and not error-prone like the pseudo-random pivot choice

- Less chance of poor performance as compared to looking at only 1 element

- For sorted inputs, splits array nicely in half each recursion
A[i] == pivot?

• Stop and swap
 › while(A[++i]<pivot){}
 › while(A[--j]>pivot){}

• Although this seems a little odd, it moves i and j towards the middle
 › the benefit of balanced partitions when i and j cross in the middle outweighs the extra cost of swapping elements that are equal to the pivot
Quicksort Best Case Performance

- Algorithm always chooses best pivot and splits sub-arrays in half at each recursion
 - $T(0) = T(1) = O(1)$
 - constant time if 0 or 1 element
 - For $N > 1$, 2 recursive calls plus linear time for partitioning
 - $T(N) = 2T(N/2) + O(N)$
 - Same recurrence relation as Mergesort
 - $T(N) = O(N \log N)$
Quicksort Worst Case Performance

- Algorithm always chooses the worst pivot – one sub-array is empty at each recursion
 - $T(0) = T(1) = O(1)$
 - $T(N) = T(N-1) + O(N)$
 - $= T(N-2) + O(N-1) + O(N)$
 - $= T(0) + O(1) + \ldots + O(N)$
 - $T(N) = O(N^2)$

- Fortunately, *average case performance* is $O(N \log N)$ (see text for proof)