Merge Sort

CSE 373 - Data Structures
May 10, 2002
Readings and References

• Reading
 › Section 7.6, *Data Structures and Algorithm Analysis in C*, Weiss

• Other References
“Divide and Conquer”

- Very important strategy in computer science:
 - Divide problem into smaller parts
 - Independently solve the parts
 - Combine these solutions to get overall solution

- **Idea**: Divide array into two halves, recursively sort left and right halves, then merge two halves \Rightarrow known as Mergesort
“Divide and Conquer”

• Example: Mergesort the input array:

```
0 1 2 3 4 5 6 7
8 2 9 4 5 3 1 6
```

• Divide it in two at the midpoint
• Conquer each side in turn (by recursively sorting)
Mergesort Example

| 8 | 2 | 9 | 4 | 5 | 3 | 1 | 6 |

Divide

1 element

Merge

Divide

Divide

Divide

Merge

Merge

Merge

1 2 3 4 5 6 8 9
Mergesort - driver

```c
void Mergesort(ElementType A[], int N) {
    ElementType *TmpArray;
    TmpArray = malloc(N*sizeof(ElementType))
    FatalErrorMemory(TmpArray);
    MSort(A, TmpArray, 0, N-1);
    free(TmpArray);
}

- Driver routine Mergesort calls the actual recursive implementation routine MSort with appropriate parameters
  - Hides implementation details from outside callers
```
void MSort(ElementType A[], ElementType TmpArray[], int Left, int Right) {
 int Center;
 if (Left < Right) {
 Center = (Left+Right)/2;
 MSort(A, TmpArray, Left, Center);
 Msort(A, TmpArray, Center+1, Right);
 Merge(A, TmpArray, Left, Center+1, Right);
 }
}

• Divide, and leave the conquering to Merge …
 › note the base case Left==Right
Mergesort - do it

```c
void Merge(ElementType A[], ElementType TmpArray[], int Lpos, int Rpos, int RightEnd) {
    int i, LeftEnd, NumElements, TmpPos;
    LeftEnd = Rpos-1;
    TmpPos = Lpos;
    NumElements = RightEnd - Lpos + 1;
    while (Lpos <= LeftEnd && Rpos <= RightEnd)
        else TmpArray[TmpPos++] = A[Rpos++];
    while (Lpos <= LeftEnd) TmpArray[TmpPos++] = A[Lpos++];
    while (Rpos <= RightEnd) TmpArray[TmpPos++] = A[Rpos++];
    for (i = 0; i < NumElements; i++, RightEnd--)
        A[RightEnd] = TmpArray[RightEnd];
}
```
Mergesort Example

Divide down to 1 element

8 2 9 4 5 3 1 6

Merge to TmpArray

2 8

Copy back to A[]

2 8 9 4 5 3 1 6

Merge to TmpArray

2 8 4 9

Copy back to A[]

2 8 4 9 5 3 1 6

Merge to TmpArray

2 4 8 9

Copy back to A[]

2 4 8 9 5 3 1 6

Left half is now sorted...
Mergesort Analysis

• Let $T(N)$ be the running time for an array of N elements

• Mergesort divides array in half and calls itself on the two halves. After returning, it merges both halves using a temporary array

• Each recursive call takes $T(N/2)$ and merging takes $O(N)$
Mergesort Recurrence Relation

• The recurrence relation for $T(N)$ is:

 › $T(1) = O(1)$

 • base case: 1 element array \rightarrow constant time

 › $T(N) = 2T(N/2) + N$

 • Sorting N elements takes
 – the time to sort the left half
 – plus the time to sort the right half
 – plus an $O(N)$ time to merge the two halves
Solving the Mergesort Recurrence Relation

1. Solve the recurrence by expanding the terms:

\[T(N) = 2 \times T(N/2) + N \quad \text{and} \quad T(N/2) = 2 \times T(N/4) + N/2 \]

\[T(N) = 2 \times [2 \times T(N/4) + N/2] + N \]

\[= 2^2 \times T(N/2^2) + 2 \times N \]

\[= 2^2 \times [2 \times T(N/8) + N/4] + 2 \times N \]

\[= 2^3 \times T(N/2^3) + 3 \times N \]

\[\ldots \]

\[= 2^{\log N} \times T(N/2^{\log N}) + (\log N) \times N \]

(recall that \(2^{\log N} = N\))

\[= N \times T(1) + N \log N \]

\[= N \times O(1) + N \log N = O(N \log N) \]

\[\Rightarrow T(N) \text{ is } O(N \log N) \]